

LLNL-TR-457671

GETTING TO EXASCALE: APPLYING

NOVEL PARALLEL PROGRAMMING

MODELS TO LAB APPLICATIONS FOR

THE NEXT GENERATION OF

SUPERCOMPUTERS

E. Dube, L. Nau, C. Shereda, with
contributions from L. Harris

September 29, 2010

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 2 October 12, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 3 October 12, 2010

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 4

2. INTRODUCTION: OVERVIEW OF THIS STUDY AND ITS OBJECTIVES 5

2.1. BACKGROUND .. 5
2.2. NEED AND OBJECTIVES .. 5
2.3. OUR APPROACH ... 6

3. PROGRAMMING PARADIGMS STUDIED .. 7

3.1. UPC OVERVIEW .. 7
3.2. OPENCL OVERVIEW .. 8
3.3. CUDA OVERVIEW .. 8

4. APPLICATION SELECTION AND SUITABILITY ... 10

4.1. CODE TEAM INTERVIEWS ... 10
4.2. SELECTION PROCESS .. 13

5. LEARNING THE NEW PARADIGMS: EFFORT AND LESSONS ... 14

5.1. UPC ... 14
5.2. OPENCL ... 15
5.3. CUDA .. 15

6. CODE CONVERSION: EFFORT AND LESSONS .. 17

6.1. CLOMP - UPC.. 18
6.2. CLOMP - OPENCL ... 22
6.3. CLOMP - CUDA .. 23
6.4. LEOS - UPC ... 23

7. RESULTS ... 27

7.1. CLOMP – UPC ... 27
7.2. CLOMP - OPENCL ... 31
7.3. CLOMP - CUDA .. 33
7.4. LEOS - UPC ... 34

8. CODE MAINTENANCE AND DEVELOPMENT ENVIRONMENT REQUIREMENTS 35

8.1. UPC ... 35
8.2. OPENCL ... 36
8.3. CUDA .. 37

9. CONCLUSION ... 39

10. NEXT STEPS .. 42

APPENDIX A. UPC TRANSLATOR CODE INSERTION .. 44

APPENDIX B. EXASCALE COMPUTING PROGRAMMING MODELS .. 46

APPENDIX C. LINKS, TUTORIALS, PLACES TO GO TO LEARN MORE 47

C.I. UPC LEARNING EXPERIENCE ... 47
C.II. CUDA LEARNING EXPERIENCE .. 50
C.III. OPENCL LEARNING EXPERIENCE ... 54

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 4 October 12, 2010

1. Executive Summary

As supercomputing moves toward exascale, node architectures will change significantly. CPU core
counts on nodes will increase by an order of magnitude or more. Heterogeneous architectures will
become more commonplace, with GPUs or FPGAs providing additional computational power.

Novel programming models may make better use of on-node parallelism in these new architectures
than do current models. In this paper we examine several of these novel models – UPC, CUDA, and
OpenCL –to determine their suitability to LLNL scientific application codes.

Our study consisted of several phases:

 We conducted interviews with code teams and selected two codes to port.

 We learned how to program in the new models and ported the codes.

 We debugged and tuned the ported applications.

 We measured results, and documented our findings.

We conclude that UPC is a challenge for porting code, Berkeley UPC is not very robust, and UPC is not
suitable as a general alternative to OpenMP for a number of reasons. CUDA is well supported and
robust but is a proprietary NVIDIA standard, while OpenCL is an open standard. Both are well suited to a
specific set of application problems that can be run on GPUs, but some problems are not suited to GPUs.
Further study of the landscape of novel models is recommended.

For readers who are: We recommend sections:

Computation directorate management 2, 7, 9, 10
Systems administrators and non-DEG LC staff 2, 7-10
CAR/CASC researchers and managers 2-7, 9, 10
Application development teams All
Development environment group staff All

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 5 October 12, 2010

2. Introduction: Overview of This Study and Its Objectives

2.1. Background
It is widely expected that the computer systems anticipated in the 2015 – 2020 timeframe will be
qualitatively different from current and past computer systems. They will be built using massive multi-
core processors with hundreds of cores per chip. Their performance will be driven by parallelism,
constrained by energy, and with all of their parts, they will be subject to frequent faults and failures. In
this new generation of supercomputing, coined Exascale Computing, the number of nodes and the
network will not dramatically change, but the system size and the node architecture are expected to
shift radically. There will be multiple memory types, including programmable (scratchpad) memory
along with generally more heterogeneous and hierarchical systems than today. The memory to FLOPS
ratio is expected to worsen.

For exascale computing, the main programming environment challenges are expected to be within the
new node rather than across nodes, since that is where the biggest changes will occur. The total number
of nodes will not increase dramatically, so the current practice of using MPI between nodes to this scale
provides one option of utilizing the exascale systems. In this hybrid model, OpenMP, UPC, Co-Array
Fortran, or GPU-centric models such as CUDA or OpenCL can be used to achieve intranode parallelism.
Another option is to utilize unified programming models at the global level (UPC, Co-Array Fortran,
Chapel, X10, etc.)

The DOE has identified two ‘swim lanes’ for reaching exascale. The swim lanes define different
architectural approaches. They are:

a) using nodes with hundreds of CPU cores, and making use of these many cores;
b) using nodes with GPU accelerators , and parallelizing applications by making use of these GPUs.

The Anticipated Exascale Timeline is listed below:

Year Anticipated Exascale Timeline

2010-2011 develop abstract node/machine model

2010-2012 initial programming models development

2012-2013 early demonstration of programming models, generating course corrections

2013-2015 continued programming models development

2013-2015 application development in programming models

2015 deployment on 100 petaflop systems

2018 deployment on exaflop systems

With the short time frame, i.e., deployment on 100 petaflop systems by 2015, there is insufficient time
to develop new programming models from scratch. The current plan is to evolve and extend existing
programming models.

2.2. Need and Objectives
This study was conducted in response to the need of application teams to determine how to make
effective use of the future exascale environment at Livermore. Making use of the forthcoming on-node
parallelism will certainly require code modification and creative approaches, and may necessitate the
adoption of new language paradigms. We investigated several of these new models. Our objectives
were to determine:

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 6 October 12, 2010

a) the relative ease in acquiring the necessary programming skills;
b) the relative ease in porting code;
c) the robustness of the development environment and tools associated with the language model;
d) the performance of applications coded with the new model.

We selected UPC, CUDA, and OpenCL as the target language models for this study. UPC is a language
that can either be used as an alternative to OpenMP for on-node parallelism, or for both intra- and
internode parallelism. CUDA and OpenCL are language models for parallelizing code using GPUs . GPUs
are one possible means for achieving high levels of intranode parallelism and reaching exascale.

In one portion of the study we compared the performance of an application ported to each of these
target models against the same application parallelized with OpenMP. OpenMP is a relatively well-
known and stable model for achieving intranode parallelism, so it provides a good baseline for
comparison. The code is an intranode-only program. There is a routine which mimics an MPI data
exchange within the code, so the target parallelism model is a hybrid one.

We also ported a separate laboratory application just to UPC and measured its performance. In this
portion of the study we modeled the unified or holistic approach of using a single notation for both
inter- and intra-node parallelism.

2.3. Our Approach
Before beginning, we selected the initial programming models to study based on resources, interest,
and applicability. The study consisted of several phases, broadly:

 We began by conducting initial interviews with code teams to determine their needs and their
understanding of the move toward exascale.

 We then selected our target applications.

 We learned how to program using the new models, learned the details of the target
applications, and ported the code, documenting our findings along the way.

 We measured performance, collected results, and looked for opportunities to improve
performance.

 We documented our findings.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 7 October 12, 2010

3. Programming Paradigms Studied

3.1. UPC Overview
UPC, which stands for Unified Parallel C, is a parallel programming language that is an extension to the C
language. UPC is a PGAS (Partitioned Global Address Space) language. This means that parallelism is
achieved through the use of shared memory and work sharing across independent threads of execution.

3.1.1. Shared Memory
Shared memory variables in UPC form the foundation of UPC’s parallelism. Rather than exchanging data
across threads through explicit communication as in MPI, information is exchanged primarily through
the use of shared memory.

Shared memory variables are declared through the use of the shared qualifier. In UPC, shared variables
are always of global scope and must be declared globally; there is no provision for local shared variable
declarations. This limitation is discussed further in Section 6.1.2.

If a shared variable is a scalar variable, it will be allocated by the first thread of a job (thread 0). If it is a
static array, it will be allocated according to a qualifier called the blocking factor. If it is a dynamic
shared array, it will be allocated according to the type of allocate call and the parameters passed. There
are three main forms of allocate call:

 upc_alloc(), in which all memory is allocated on thread 0;

 upc_all_alloc(), in which memory in an array is allocated in a round-robin fashion according to
the blocking factor; and,

 upc_global_alloc(), which is typically used to allocated multiple arrays with the same
dimensions, one array per thread.

The design of UPC allocations enables UPC to make appropriate use of NUMA memory layouts. When a
shared array variable is allocated using upc_all_alloc(), a chunk of that array then resides in local shared
memory. Assuming that the allocation and subsequent work sharing are done correctly, the thread will
then spend the majority of its time accessing shared memory that is local to that CPU core. Pathological
NUMA memory access cases are avoided. These pathological cases are ones in which most of a thread’s
working set resides in the physical memory associated with a distant CPU, requiring additional traversals
of NUMA pathways and increasing memory latency.

3.1.2. Work Sharing
Work sharing is done primarily through the use of the upc_forall construct. This statement is used in
place of the for statement on loops for which work sharing is to occur. The upc_forall statement is of
the form:

upc_forall(expression1; expression2; expression3; affinity)

The first three expressions are equivalent to those for a normal C for loop. The affinity component
indicates to a particular thread of execution which subset of the total loop iterations it should execute.
In the simple case, if affinity is an integer expression, a thread will execute all iterations in which (affinity
modulo number of threads) equates to the current thread number1. The simple case of using the loop
counter variable as the affinity expression usually results in best performance.

1
 El-Ghazawi, Tarek, et al. UPC: Distributed Shared Memory Programming. Wiley-Interscience. P. 51.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 8 October 12, 2010

3.1.3. UPC Threads and Network Layer
The implementation of UPC threads is not restricted to actual intranode userspace threads, and the two
are distinct concepts. In the case of Berkeley UPC, UPC applications run on top of a layer called the
GASNet (Global Address Space Network), and the GASNet determines the actual thread implementation.
Possible GASNet layers include SMP (single node with pthreads), PSHM (process shared memory), MPI
(in which the UPC shared memory is actually implemented via MPI calls), and various network APIs such
as Infiniband verbs.

The number of UPC threads2 is fixed at program startup, and does not change during the code’s
execution. This attribute of UPC makes it similar to MPI in that each process or thread is alive from
inception through exit.

3.2. OpenCL Overview
OpenCL (Open Computing Language) is a parallel programming ecosystem intended for use with
heterogeneous processing environments. It is similar to the CUDA system, mentioned in the next
section, in that it is able to target GPUs. However, OpenCL is more general-purpose than CUDA, and
may be used on any device that has a supported implementation. Programs that utilize OpenCL consist
of traditional code (C/C++), along with the OpenCL API, which enables the setup and control of
execution kernels, which perform the computationally intensive work requiring parallelization. Kernels
are written in a subset of the C99 language, and are compiled to target a computing device. Supported
devices include (multicore) CPUs, GPUs, and accelerator devices such as the Cell BE. In this manner,
multiple types of computing resources may execute binaries built from the same kernel source and
using the same setup/communication code.

3.3. Cuda Overview
CUDA, Compute Unified Device Architecture, is a programming model and instruction set architecture
initially released in November 2006 by NVIDIA to allow for application developers to access GPUs
(Graphical Processing Units) without having to use the graphics API. CUDA comes with a software
environment that supports C, along with Fortran, OpenCL, and DirectCompute. Additionally, you can get
compilers for PyCUDA (Python) and JCUDA (Java-CUDA).

The core concepts for CUDA revolve around three key abstractions: a hierarchy of thread groups (think
tree structure), shared memories, and barrier synchronization. These abstractions are accessible to the
programmer through a set of language constructs. The programmer must think about data parallelism
and the effects of threading when considering how to partition his problem because, as seen in Figure
3-1, data cannot be shared across blocks. Blocks are normally assigned to separate Streaming
Multiprocessors (SMs).

2
 The term thread in UPC refers to an independent execution of the code. The underlying implementation of a UPC

thread can be either a userspace thread or a process, depending on the underlying network layer.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 9 October 12, 2010

3
Figure 3-1 Diagram of CUDA GPU Memory layout

The overall methodology is heterogeneous computing with the CPU executing sequential portions while
parallel operations are executed on the GPUs. When programming in CUDA, you must think about
where entities will reside or need to be accessible from – i.e., will this data/function reside solely on the
host (CPU) or will it go/be accessible to the device (GPU), which memory of the device will it use (global,
shared, private), and so on. Then, you must allocate the data, copy the data to the GPU, compute on the
GPU, then copy the data back to the CPU, using appropriate CUDA directives. The goal for optimized
CUDA code is to copy the data as infrequently as possible and do as many computations on this data as
possible once it is on the GPU.

3
VolumeI_CUDA_Intro.pdf, http://developer.nvidia.com/object/cuda_training.html, vg 21

http://developer.nvidia.com/object/cuda_training.html

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 10 October 12, 2010

4. Application Selection and Suitability

4.1. Code Team Interviews
We interviewed a number of code teams and learned about the characteristics of their codes to
determine if they would be suitable for our study. In addition to helping us better understand these
codes and decide whether they should be included in the study, the interviews provided an opportunity
for us to discuss exascale challenges in greater detail with some of the teams. We recommend that we
hold follow-up meetings with these teams to discuss our findings and discuss further the languages and
tools that should be utilized in their preparatory plans for exascale.

See Table 4-1 below for a description of these codes.

Code
Name

Team
Members

Selected Code Name

LEOS Burl Hall,
Rob Neely,
Tom
Epperly,
Dale Slone,
Ellen Hill

Yes The Livermore Equation of State (LEOS) Package was our initial
code of interest. One of us (Evi) began working with LEOS prior to
other team members joining the project. The Livermore Equation
of State (LEOS) project generates and delivers equation of state data

tables for use in LLNL hydrocode simulations. In 2006-2007, Tom
Epperly explored the use of Global Arrays and a caching system4
to reduce the memory footprint of this library. Since his work, the
library has been rewritten. After discussion with team members,
we decided it would be interesting to see how UPC, using the
shared memory with affinity approach, would handle the large
coefficient array prevalent in LEOS and a concern to multi-physics
code teams as new computer architectures come to LLNL. We
want to see if we can use UPC’s shared concept to spread this
coefficient array across threads/processors efficiently versus
having the entire coefficient on every processor. To control the
scope, we further decided to look at the Livermore interpolate
Package, (LIP), and focus on the calculation of the coefficient
array within this library since it is now a stand-alone package.

CP2K Will Kuo No CP2K is an F95 code to perform molecular and atomistic
simulations of substances in different phase states5. The code has
components for traditonal molecular dynamics, density
functionals, and Kim-Gordon models. Because no version of the
code and no kernels are written in C, we deemed it an unsuitable
candidate for this study. Will suggested that we meet instead
with the Cheetah team, and that the kinetics and thermo routines
within Cheetah would be of interest.

Cheetah Larry Fried,
Peter

No Cheetah is a widely used thermo-chemical code written in C. We
met with Larry, Soren Bastia, Will Kuo, and Peter Vitello to discuss

4
 Scalable Equation of State Capability, Tom Epperly, Fred Fritsch, Peter Norquist, and Lawrence Sanford,

November 2007
5
 http://cp2k.berlios.de/

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 11 October 12, 2010

Code
Name

Team
Members

Selected Code Name

Vitello,
Soren
Bastia, Will
Kuo

the possibility of using Cheetah as the basis of our study. Because
the code is a collection of routines, and these routines must be
called from outside Cheetah, we needed a ‘standard’ caller case
for the purposes of our study. The team did have a wrapper case
that they were able to provide to us. Due to the complexity of the
code and other issues, we opted not to study Cheetah.

Hypre Rob Falgout No Hypre is part of the scalable linear solvers project at LLNL. It is ‘a
library of high performance preconditioners that features parallel
multigrid methods for both structured and unstructured grid
problems.’6. It is a sparse matrix code written in C. In our
meeting with Rob, he suggested that if we were to select Hypre,
we focus on the AMG2006 (Algebraic Multigrid) solver. That
solver is the benchmark for an LDRD project being worked on by
Allison Baker, Martin Schulz, and Bronis deSupinski . It examines
OpenMP performance when used in conjunction with a memory
affinity patch written by that team.

PF3D Bert Still No PF3D is a key code in use in the National Ignition Facility. PF3D is
written in C and is used to model the behavior of the laser light
inside the target chamber of NIF. A laser-plasma interaction
effect makes PF3D simulations critical to NIF’s success. As the
wavelength and energy of laser light increase inside the chamber,
and as the light is reflected off of the hohlraum , a natural process
called Raman scattering inhibits measurement. This increases the
need for accurate simulation with PF3D prior to conducting high-
energy experiments.

PF3D is highly scalable and there is a great demand for
computational cycles to run simulations. The most important
kernels in PF3D are contained in eight light wave solvers that look
similar to each other. The vast majority of the code’s time will be
spent in these solvers for problems of interest. All data is stored
in 1d heaps, and the code uses a regular Cartesian mesh.

The PF3D kernels are relatively compact and the code builds fairly
quickly. A complicating factor is that the code is run under Yorick,
which is an interpreter also written in C.

I (Charles) had initially begun working on PF3D, but switched to
CLOMP in early June once we determined that CLOMP was better
suited to an initial investigation. PF3D is a marquee application
and contains critical loops that are well suited to work sharing.
However, it is a much larger code than CLOMP. Parallelizing it

6
 https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 12 October 12, 2010

Code
Name

Team
Members

Selected Code Name

with UPC would involve examining and likely modifying all
functions in all code files. Yorick might also require modification.
The PF3D code is currently parallelized with MPI and this adds
complexity.

BLAST /
blast+

Tom Slezak No In our meeting with Tom, we discussed the future needs of
biocomputing applications like BLAST. Tom noted that the
primary algorithm for biocomputing involves repeated hash table
lookups – looking for a particular DNA sequence within the larger
genome. This is a memory-intensive operation. A large amount
of physical memory is needed to store the full genome that is
used in the lookup.

Many of the current LLNL supercomputers are not well suited to
the sorts of scientific problems that Tom’s team is solving because
there is not enough memory available. The team has purchased a
special SGI Altix machine that has half a terabyte of memory. This
system, along with FPGA-based systems that are specially
designed for solving the pattern-matching problem, are where
computing is headed for bio. Pacific Biosciences will soon be
charging very little to do sequencing. The reduction in cost is so
significant that it changes the nature of the problem in bio, and
analysis of results, rather than sequencing, becomes the major
bottleneck.

Tom is concerned that the future of generalized supercomputing,
in which there is an abundance of CPU cores on nodes but no
significant shift in memory per core, or even a reduction, is not
the direction that biocomputing needs in order to solve next-
generation problems. An example of a next generation bio
problem is metagenomic sequencing, in which all of the DNA from
a soil sample is analyzed to determine its origin and is compared
against multiple genomes. The metagenomic problem will
require 1 to 2 TB of RAM. Tom envisioned a metaphorical
solution that had a biological appearance. In his solution there is
a very large sphere of memory which contains the problem, and
then compute engines ‘walk’ the surface of the problem sphere.

While the global memory addressability of UPC might be
theoretically useful for biocomputation, latency to memory is the
ultimate limiting factor for applications like BLAST, and addressing
off-node memory causes such a major performance reduction
that the application is effectively unusable. Since only one task
will be running per node in order to provide the maximum
amount of addressable memory, there is little opportunity for
task- or thread-level parallelism. Cross-node parallelism is

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 13 October 12, 2010

Code
Name

Team
Members

Selected Code Name

embarrassingly parallel.

CLOMP John
Gyllenhaal

Yes C Livermore OpenMP benchmark. CLOMP is a benchmark code
that mimics a key laboratory code. John Gyllenhaal and Greg
Bronevetsky developed the CLOMP code to measure OpenMP
overhead. The code is relatively small, is highly configurable via
run-time parameters, and is ideal for modeling overheads
associated with thread parallelism. In its unmodified form, the
innermost loop in the code walks through members of a linked
list. There are cross-iteration dependencies in the innermost
loop, so thread parallelism is attained by work sharing of an outer
loop that iterates over multiple linked lists which are independent
of one another.

Table 4-1 Candidate code descriptions.

4.2. Selection Process
We decided which codes to study based on several factors:

 Either a key LLNL code or representative of key laboratory codes;

 Ease of build;

 Version already in existence with OpenMP directives to enable performance comparisons with
OpenMP cases;

 Code has elements that we anticipated would ‘push’ or stress the language models tested;

 Code was compact enough to be ported to target language model in limited amount of time.

For these reasons, we selected the CLOMP code for our combined UPC, CUDA, and OpenCL porting
effort.

LEOS was selected to represent a first physics porting effort based on some of these factors and also
because it explored the use of UPC for the unified model of parallelism, as opposed to the hybrid model.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 14 October 12, 2010

5. Learning the New Paradigms: Effort and Lessons

We hosted several activities to help us move forward in learning about exascale programming models:

 Lawrence Berkeley National Laboratory is where a large part of UPC is currently developed. We
contacted Paul Hargrove, one of the lead developers, and arranged a visit. We met Filip
Blagojevic , another developer who specialized in application codes. We learned more about
UPC, and how UPC shared memory works. We heard how this effort is truly on a shoe string
budget, and works with a minimalist approach. We discussed some of our concerns about
needing to move shared variables to the top of the code, and heard that although these are real
issues, there is little room for changes to the standard at this time. We learned there are local
versions of UPC (i.e., the Berkeley version) that have features that get around some of the
limitations to UPC. However, these features are not portable. We also learned that the MPI-UPC
collaboration was done without help from LBL. Finally, Charles showed his coding issues, and
Paul and Filip worked through some of the bugs. We then got his code to compile, learning in
the process about UPC. Because of this connection, we now have a conduit into the UPC system
that can get us answers to some of our questions.

 To learn more about what others at LLNL are doing concerning GPU programming and CUDA in
particular, we hosted a meeting with a group of scientists and computer scientists doing CUDA
work. These folks included Jon Cohen, John Gyllenhaal, Lee Nau, Charles Shererda, Evi Dube,
David Richards, Jim Glosli, Tod Gamlin, Lukasz, and Manaschai Kunaseth. Jon Cohen gave a talk
on the speedup he has made going from OpenGL to CUDA –which was quite impressive. It did
seem that the projects were GPU specific. David Richards had two summer students (Lukasz
and Manaschai) working with the same physics module, converting it to OpenMP and CUDA.
Luskasz has good experience in CUDA, and he described his current project as his toughest to-
date. He had similar issues similar to ours in porting, including handling pointers. Our plan is to
stay connected via a majordomo list and the SharePoint site

We set up a SharePoint Site which allows us to maintain a place for documents and communication to
team and outside groups. When Charles started working on the project, this site proved useful in having
a handy place for him to locate all of Evi’s detailed journals. Her research and journals helped him
understand some of the pitfalls and challenges of UPC before he encountered them on his own, and
reduced the time he spent looking for relevant information. The summer students have used this site to
archive their information.

5.1. UPC
Both Evi and Charles came onto this project with a background in parallel and C programming but no
prior experience with UPC. This gave us the opportunity to determine the relative difficulty of learning
UPC, and what challenges a first-time UPC programmer faces.

We both began learning UPC by reading the book “UPC: Distributed Shared Memory Programming” by
Tarek El-Ghazawi, William Carlson, Thomas Sterling and Katherine Yelick . It becomes apparent in
learning UPC that there is not a vendor backing this language or a large number of people to support an
infrastructure. Sources include the one book, written a few years ago, examples on the web from a few
sources (all academic), a handful of PowerPoint presentations from the Supercomputing Conference
from a number of years ago, and a handful of research papers, again all academic. In Appendix C, you
can find more about these sources.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Tarek%20%20El-Ghazawi
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Thomas%20Sterling
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Katherine%20%20Yelick

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 15 October 12, 2010

Concurrently, we each built and installed the Berkeley UPC compiler and translator and different
GASNets so as to increase our understanding of the Berkeley implementation. Documentation for the
build and install process, and for using the compiler and translator, is limited to READMEs and help text.
A cautionary note: When building, it’s necessary to verify you have successfully linked the compiler with
the translator. Otherwise, your programs will be shipped unannounced to Berkeley to be translated - an
undocumented feature. When determining the compiler variations, there are many types of GASNet
options, and you must peruse the README files to decide which version you want to build. Additionally,
you must figure out what the difference is between the versions and why you would want to chose one
over the other. To-date, we cannot say why one is better than the other, and we have not run enough
tests to understand the differences.

Once we had a working compiler and translator, we began to write and build simple UPC applications. It
was only at this point that we really began to understand the UPC paradigm – that all UPC threads
execute all program code and that the upc_forall construct splits the original loop into subsets of
iterations that are executed by individual threads. This was also the point at which we gained familiarity
with the runtime system and the memory management for UPC. Occasionally, there were errors in the
book and PowerPoint slides, so patience and problem solving were in order, along with confidence in
your ability to debug with printf statements, since debuggers supporting UPC do not presently exist.
When actually writing programs, there are limited existing codes out there. We did use the websites
from Michigan Tech University for examples.

Perhaps the most difficult aspect of UPC to learn is the UPC shared memory model. It is hard to figure
out what is really happening shared memory-wise. Since there is no debugger, you have no way of
knowing what is happening in memory apart from using printf.

5.2. OpenCL
There is a wealth of resources available for getting up to speed on OpenCL. Materials exist from the
major vendors supporting the standard (NVIDIA, AMD, Apple), as well as from academic institutions.
While not contained in one central location as with the CUDA resources, they are fairly easily located.
Having previous experience with CUDA is definitely helpful, although not required for learning to use
OpenCL. Learning from several sources was helpful in that resources were stronger in some areas than
others, so they nicely complemented each other. In Appendix C is a list of resources used and their
various strengths and weaknesses.

No one resource is the be-all and end-all of learning OpenCL. Some are tailored to more specific
audiences and go into varying levels of detail. Also, different platforms may not behave identically.
Code that compiled and generated no errors on the Apple implementation included with OS X 10.6
(Snow Leopard) did not function properly when run using the NVIDIA implementation. Thus, it is
important to have thorough error checking and reporting code, since assumptions made for one
platform may not hold on another. It is also helpful to run code on different platforms, to compare and
contrast implementation differences, and to locate non-portable code.

5.3. Cuda
CUDA has been in existence longer than OpenCL, and is supported by a single vendor, NVIDIA, so the
system has had time to mature. The learning resources available are thorough and robust. The CUDA
developer web site is well maintained and contains useful examples and documentation. Some
examples are partially coded already, and only requiring filling in specific parts to get started. These
progress from easy to more challenging examples and so guide the learner as his skill increases.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 16 October 12, 2010

There are some challenges in getting code to work in an HPC environment where jobs must be
submitted to a queue, such as edgelet at LLNL. Most of the learning examples assume a user has a
single workstation personally available to him, and that code will be run locally. Working in an HPC
environment generally has two differences: loading the cuda module into the working environment,
and submitting jobs to a queue to be executed.

Although CUDA is relatively stable, at least in comparison to OpenCL, it should be noted that there are
new releases usually two to three times a year. In fact, the same week as authoring this, the newest
release candidate 3.2 was announced. While this release schedule is not overly frequent, it is more
frequent than some other more established software.

The concept of CUDA programming is similar to vector programming, with the addition of moving data
to and from a GPU device before and after computation. In order to amortize these data transfer
penalties, computation kernels which are intensive are desirable from a performance perspective.

The lack of pointer support for older hardware is an annoyance, and the CLOMP port was not able to
utilize them, as the newest hardware did not arrive at LLNL until late in the summer. More generally,
and perhaps more challenging than the frequency of software releases, is the rate of hardware releases,
each of which brings performance and usability features, but also requires retuning and enhancement of
existing codes.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 17 October 12, 2010

6. Code conversion: Effort and Lessons

In porting any code, the first task is to have a firm grasp of what the code does and how it does it. A
portion of the porting effort for our team was devoted to understanding the codes that we were
porting. Presumably the time that we spent on this establishes an upper bound; we expect that the
typical application developer will be more knowledgeable and familiar with the code that he is porting
than we were initially with the codes we studied.

We believe, however, that there is a ‘sweet spot’ of code familiarity. If a developer is overly familiar
with his code and has not changed it significantly in a long while, he runs the risk of becoming mentally
invested in the existing code design. This can create barriers to forming creative solutions in code when
new challenges such as exascale arise. The new language models will certainly require creative thinking
on the part of application developers. More importantly, whatever the language model, the
forthcoming hardware architectures and the massive increase in scale make creative approaches to
problem solving an absolute requirement.

One recommendation we make independent of this study is for code teams to hold architecting
brainstorms in which they consider how they would go about solving some of their key problems given
scale and target architecture design, while ignoring the existing code base. This effort could also ignore
programming language models and specific parallelism solutions, to the extent this is possible.

An outcome of a series of such brainstorms might answer the question:

Given a particular scientific problem of interest, and an architecture of either GPU-based or
many-core-based systems at a particular scale, what would a code look like that solved this
problem and took maximal advantage of the architecture and scale?

Certain assumptions could be made to enhance the usefulness of the design, such as, the code must mix
two modes of parallelism, one to take advantage of on-node parallelism and one such as MPI to take
advantage of off-node parallelism.

Once this high-level design is complete, code teams could then compare it to the existing code base and
see where overlaps and gaps existed. In some cases, large portions of code may need to be
rearchitected to make full use of exascale. By holding these sessions early, however, the team can
identify what the code architecture should be, jump-start the creativity process, and solve whole new
domains of problems.

A further recommendation is that teams be reconfigured slightly to introduce fresh ideas and assist with
the creative process. We recommend soliciting volunteers or ‘exchange developers’ to shift across code
teams so that at least one new person and sometimes two new people change teams in order to
participate in the design effort. These exchange developers should be staff who are ready to offer their
perspective in spite of a lack of familiarity with the new code.

In this study, we focused our efforts on codes without MPI parallelism. All of our porting efforts either
replaced existing parallelism or parallelized a non-parallel code. With only a single mode of parallelism
in our codes, the study was strictly an examination of these novel forms of parallelism. We have not yet
examined the effort involved in mixing these parallelism modes.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 18 October 12, 2010

Mixing modes will introduce additional programming complexity. It will also create the potential for
new forms of race condition and deadlock. There may also be special challenges associated with the
network layer, especially if the network layer is shared across parallelism modes. We strongly
recommend that the network layer not be shared. See Section 6.1.2 for further discussion.

6.1. CLOMP - UPC

6.1.1. Effort Required
The effort to convert CLOMP from OpenMP to UPC and get the code into a working state is detailed
below in Table 6-1. Note that our initial meeting to discuss CLOMP was on June 4, and I (Charles)
worked approximately half time at LLNL on this effort. Task durations are approximate and do not
reflect the fact that the porting effort was a more integrated and iterative process than what this table
would suggest.

Task Approx.
Duration

Notes

Familiarization with code (includes initial
meetings with code author, sketching out a call
tree and data usage chart to assist with
comprehension, test runs, and experimentation
to understand the properties of the code under
different runtime scenarios.)

4 days This figure will vary widely by programmer.
I (Charles) was slow initially as I regained
familiarity with HPC applications. For
many this figure would be lower for the
CLOMP code, and for some, higher. This
code was relatively small. For a large
parallel application, a very significant
amount of time – months – could be spent
learning the code, what the various
components do, the build system, how to
make effective use of it for different types
of problems, and where the majority of
time is spent for different types of
problems.

Identification and removal of OpenMP pragmas
and function calls7

4 hours The actual time to do the removal in this
code is trivial. More time was spent
understanding what the various parallel
code components were doing, such as
identifying specific variables that were
shared or private, and loops that were
parallelized and would be parallelized
under UPC.

Removal of extraneous OpenMP functions8 1 day Some of this time was spent in

7
 To eliminate compiler warning messages, all OpenMP pragmas were removed. OpenMP function calls such as

omp_get_num_threads() and omp_get_thread_num() were removed and replaced with the relevant references to
UPC constants such as THREADS and MYTHREAD.
8
 The original CLOMP code contains OpenMP best case, static, dynamic, and manual parallel loops. It does not

make sense to mix OpenMP and UPC in the same code, since both are threading paradigms, and in the case of
UPC, all threads are alive for the duration of the code. Additionally, UPC inserts additional code for all shared
memory variable references, so that code performance can be perturbed from the standard C case even if the

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 19 October 12, 2010

Task Approx.
Duration

Notes

understanding what these routines were
doing and whether there was any
opportunity to preserve them or create
similar routines using UPC.

Identification of variables to convert to shared
memory variables

2 hours Time spent identifying variables was minor.
Note that if more time had been spent
looking at this exhaustively, it might have
saved later debugging time.

Conversion of variables to shared memory
variables. Movement of any local variables that
must be shared to global declaration section

2 days Conversion of variables from standard
variable types to UPC shared memory
variables was conceptually challenging in
several cases.

Proper allocation of shared memory variables 4 hours While the amount of code to do this is
trivial, it was necessary to carefully
consider what form of UPC allocate calls
should be used for each dynamic shared
variable.

Conversion of for loops that must be parallelized
to upc_forall loops

4 hours Parallelization of for loops was not a simple
one-to-one correspondence with prior
OpenMP parallelization. Each loop was
examined.

Serialization of all parts of code that must be
performed in serial

3 days It was not possible to simply serialize
(conditionally execute if MYTHREAD = 0) all
portions of the code that were run from a
single-threaded region in the OpenMP
case. This is because private variables
must be initialized for all threads, not just
for thread 0. This made serialization one
of the more challenging tasks - updates to
shared variables had to be either serialized
or operated on with a upc_forall loop, but
updates to private variables had to be
executed independently by all threads.

Debugging of basic compilation problems 2 hours Minor amount of time.

Debugging of runtime issues:

code is run in a serialized region. For these reasons, comparisons between OpenMP and UPC runs of the CLOMP
code must be with different executables rather than different timed test cases within the same binary.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 20 October 12, 2010

Task Approx.
Duration

Notes

Serial code issues such as:
 segmentation violations;
 incorrect results obtained in serial case;
 failure to run to completion in serial case

3 days There were a number of serial code issues,
but the one that consumed the most time
was incorrect results caused by a failure to
advance a pointer.

Parallel code issues such as:
 segmentation violations;
 incorrect results obtained in parallel case;
 failure to run to completion in parallel case

13 days Parallel run bugs and race conditions were
caused primarily by the following issues:

 Portions of code were serialized
that should have been parallelized;

 Portions of code were parallelized
that should have been serialized;

 Private variables should have been
declared as shared, and vice versa;

 Missing barriers where barriers
were needed;

 Wayward barriers in serial sections
of code.

Performance analysis and tuning 3 days Most effort was spent in analysis of C code

generated by translator.

Total 31 days
Table 6-1 Work breakdown, UPC learning and code conversion effort, CLOMP.

6.1.2. Overall Lessons
The lessons that I (Charles) learned from porting CLOMP to UPC are:

 UPC basics are easy to learn;

 Pointer arithmetic causes code insertion;

 It is challenging to fully conceptualize complex data layouts as shared types;

 Shared variables always have global scope;

 Porting code that is already threaded is nontrivial; and

 Mixing MPI and UPC will be very challenging.

These are explained further below, along with their implications.

UPC Basics Are Easy to Learn
It is fairly easy to acquire the basics of UPC. Unlike MPI, there is not a large library of function calls to
learn. However, understanding the idiosyncrasies of UPC, especially allocation and manipulation of
shared variables, takes practice and skill.

Pointer Arithmetic Causes Code Insertion
UPC lends itself well to computational problems that can be modeled using a single global address
space. In the case of the CLOMP code, each thread operates on a group of linked lists that are
independent of each other. This is not the most advantageous case for UPC because there is a fairly

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 21 October 12, 2010

high performance penalty for doing pointer arithmetic in UPC: the UPC translator inserts two function
calls for every pointer dereference and modification. Those functions are inlined but each calls other
functions that interact with the underlying GASNet layer. This results in a significant amount of total
code inserted. See Appendix A for an example of the code that is inserted by the UPC translator.

It Is Challenging to Fully Conceptualize Complex Data Layouts as Shared Types
The layout of an important data component in the CLOMP code is implemented as a pointer to a pointer
to a data structure. Mimicking this layout in UPC required the use of a shared pointer to a shared
pointer to a shared data structure. This was a confusing layout and was the source of several bugs. I
(Charles) spent a good deal of time considering the full implications of this layout. I mapped this out
several times and had to put numerous printf’s in the code to debug some problems with it. The first
layout that I devised was also the final one that I used; however, in between this first and final stage I
tried a number of alternate layouts while debugging. I was uncertain whether my original layout would
work as I expected it to. The original layout was acceptable, and the bugs had different causes. In this
case I spent time trying alternate approaches because of uncertainty about the language, rather than
spending time looking for bugs in my code. This pattern was reinforced by some uncertainty on the part
of the Berkeley UPC team about whether my data layout was acceptable. Better documentation and a
more robust product would have enhanced my confidence that my coding approach was a legitimate
one.

Shared Variables Always Have Global Scope
Shared variables are always global in UPC. They are declared at the beginning of a program. This is an
impediment to porting a large code to UPC. It will require programmers to forgo modularity in their
code design for any variables that reside in shared memory.

Porting Code That is Already Threaded is Nontrivial
Because all threads are alive from beginning of program, it is nontrivial to port code that is already
threaded. Every piece of the code must be examined to determine if it should only be executed by
thread 0, or if it should be executed in parallel. Because of the way shared variables are allocated and
the need to populate private variables for each thread, there is not a one-to-one correspondence
between serial versions of the code using a typical threading model and serial versions of the code in
UPC. Wherever shared variables are used, there is the potential to overwrite those shared variables
with multiple threads. Wherever private data is modified, there is the possibility that all threads must
make those same modifications, depending on how that data is used.

Mixing MPI and UPC Will Be Very Challenging
Porting existing MPI applications to a mixed MPI/UPC model will be especially tricky. All UPC threads
and all MPI tasks are simultaneously alive throughout the life of the program. If we assume a model in
which UPC threads are used on-node and MPI across nodes, and an on-node form of GASNet such as
PSHM (Process Shared Memory) or SMP (pthreads) is used by UPC, the two models will not be in
contention for the same network layer. This eliminates some complexity.

However, all MPI communication must be performed only by UPC thread 0. UPC thread 0 must also
have a consistent view of all threads’ memory at the point when it attempts to access shared memory.
The easiest way to implement this is through the use of UPC barrier calls. If UPC will be used in
conjunction with MPI on production LLNL application codes, we recommend that LC develop a
programming standard and tutorial for mixing the two models. Application programmers will learn how

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 22 October 12, 2010

to mix the two models in a consistent way, and LC staff will develop their expertise as they create the
standard.

6.1.3. Debugging
Debugging the UPC version of the CLOMP code was a very slow process, primarily because the only
debugging tool available for current versions of UPC is the printf statement.

One of us (Charles) spent several days investigating the potential of using TotalView with alternate
versions of UPC, GASNet layer, and debugger. TotalView had been supported with earlier versions of
Berkeley UPC and TotalView, but was not officially supported in more current releases of either. While
it was possible to launch UPC codes under TotalView and insert breakpoints, the breakpoints were
ignored, and it was not possible to halt program execution. In discussions with the Berkeley UPC team,
we learned that they were not surprised to hear of the problem, were uncertain whether TotalView
would work, and had not tried using TotalView themselves with current releases of either TotalView or
UPC. We discussed the possibility of getting Berkeley UPC supported in a current TotalView release with
our on-site TotalView expert, Matt Wolfe. It seemed likely that the amount of time that it would take to
add UPC support would exceed the amount of time needed to debug CLOMP even if we categorized the
issue as urgent. We agreed to make the issue of UPC support a medium-priority issue.

I (Charles) made the decision at this point to move forward with more primitive debugging methods as
opposed to installing old versions of Totalview and UPC in an effort to get a working debugger. In
hindsight it may have taken less time to install these old versions and get TotalView working than it did
to debug using printf statements. Debugging the parallel version of the code took the most time of any
single task by far.

A working debugger will be necessary in a production environment.

6.2. CLOMP - OpenCL

6.2.1. Effort Required
Familiarity with the CLOMP codebase had to be first attained before taking any other steps.
Understanding the nuances and program design decisions was crucial for later steps involved with
porting. Beginning with simple OpenCL examples was useful also, since a basic understanding was
requisite for any code porting. After that, identifying the portions of CLOMP that had to change, and
those that did not, was a key step, since it was desirable to modify the existing codebase only as much
as absolutely necessary. The lack of pointer support in OpenCL required a restructuring of the main data
types used (linked lists) into linear arrays suitable for memory copies to/from an OpenCL device. Also,
since the CLOMP algorithm is essentially a two-step process, one emulating an MPI call, it was necessary
to transfer data to the compute device and back at each iteration, which required some thought as to
how best structure the transfer code.

We estimate that Lee, who worked on the OpenCL to CLOMP port, spent approximately 35 days of effort
on learning OpenCL and on the port.

6.2.2. Overall Lessons
Starting with simple examples and working up to the CLOMP port was a straightforward process.
However, some unexpected snags were hit along the way. It is crucial to completely understand an
algorithm and its data dependencies before attempting to port it to OpenCL, which has a fairly restricted
processing model. For instance, CLOMP depends on performing double-precision floating-point

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 23 October 12, 2010

operations, which are only supported by a subset of compute devices, and must be enabled using an
extension to the API. The lack of pointers presented an interesting challenge, and required more effort
than probably any other aspect of the port.

6.2.3. Debugging
Debugging is a very challenging aspect of writing OpenCL applications. A first key step is to provide as
much error checking and reporting code as possible, to catch problems that might not otherwise be
obvious. Beyond this, there is not really much debugging support. Even printf is only supported as an
extension on some platforms and devices. Reading forums of people who had similar issues was helpful,
but ultimately a very careful visual inspection of kernel code is the best debugging tool available
currently.

6.3. CLOMP - Cuda

6.3.1. Effort Required
When we first applied CUDA to CLOMP, it did not have pointers or recursion, so the linked list in CLOMP
had to be converted to an array. Additionally, the mindset for CUDA is different from that of the
traditional MPI/OpenMP programming paradigm and it takes a while to get in the right frame of
reference, i.e. traverse through the linked list and do work on each piece of data versus bundle up your
data, ship it off to the GPU, do work, then ship it back. We did not ever quite get there with the CUDA
conversion of CLOMP. As is always the case, it is easier to start with a fresh, clean piece of paper than to
try to shoehorn an existing algorithm into a new programming paradigm.

We estimate that our summer student, Lance Harris, who worked on the CUDA to CLOMP port spent
between 25 and 30 days of effort on learning CUDA and on the port.

6.3.2. Overall Lessons
This exercise had some positives and some negatives. We immersed ourselves in the language and
learned by doing a real problem in which we had answers. We could compare results between different
programming models and contrast different styles, and in talking to others doing CUDA, we ran into
similar issues with the language which validated our positive experiences and challenges with converting
our real problem.

6.3.3. Debugging
There are several options for debugging with CUDA. CUDA toolkit ships with CUDA.gdb debugger, and a
profiler, along with the documentation to figure out how to run the debugger. Additionally, NVIDIA has
set up their infrastructure to allow for others to easily build tools. Totalview has come out with a beta
version for CUDA, and Alliana has a commercial debugger for CUDA which we will evaluate shortly.

6.4. LEOS - UPC

6.4.1. Effort Required
LEOS is under Subversion, on the Livermore Computing platforms. At ~70K lines of code and ~200 files,
there is a learning curve to understanding the basics of LEOS. Fortunately reasonable documentation
exists to get a quick overview of how the code works, and the data is organized in one large data
structure. The part of LEOS that would be affected by UPC was isolated in one package of LEOS, called
LIP, which is the Livermore Interpolation Package. LIP consists of ~50 files and its own test packages that
are the standalone version of the interpolation package in the LEOS access library.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 24 October 12, 2010

There were two challenges to the conversion. The first challenge was augmenting the data structure in
which the coefficient array resided. This data structure consisted of all of the information for the
interpolant. As the coefficient data was calculated, the structure would then allocate memory within
the data structure.

LIP_interp

LIP_Style setup_type Coefficient setup type

char *xname

Name of the first independent variable

(LEOS:rho).

integer Nx Number of x-grid values

real8 *x Pointer to array of x-grid values

char *yname

Name of the second independent variable

(LEOS:T).

integer Ny Number of y-grid values

real8 *y Pointer to array of y-grid values.

char *fname Name of the function being interpolated

real8 *fval

Pointer to array of f-values on (x,y)-

grid

real8 *dfdx Pointer to array of df/dx-values on this grid

real8 *dfdy Pointer to array of df/dy-values on this grid

real8 *twists Pointer to array of d(df/dx)/dy-values

real8 *coeff Pointer to interpolation coefficient array

LIP_meth int_type Interpolation type for coeff

 Figure 6-1 LEOS Data Structure.

After talking with the UPC experts from LBNL, and looking at the very few examples in literature, I (Evi)
decided to leave the coeff array within the structure and make it a shared pointer, versus pulling coeff
out of the structure, and having to recode a significant part of LEOS/LIP, which relied on coeff being
within the LIP_interp struct. Making that decision brought about another challenge, one I would have
regardless of the implementation method – coeff and thus LIP_interp needs to be declared at the global
level. To get around that, I ensured that it was properly defined in a header file, and the header file was
ubiquitous.

As was the case with the CLOMP conversion, much of my time was spent checking and rechecking
myself concerning how to handle the shared memory, how was this data really going to be distributed
across the threads, and did I correctly have the coefficient at the global level. I did not have confidence
in myself, and had vague compiler errors that were not helpful. Luckily, we had the connection with
LBNL at some point during the process so I could sent them snippets of code and they were able to help
with the compilation of LIP.

Next, I had to convert a test problem to UPC, and I chose liptest.c, which tests the setup functions for
LIP, building several cases of the coefficient array. My initial foray through liptest.c did not pick up on
the fact that liptest.c used a temporary coefficient array to build the permanent coefficient array in the
Lip_interp structure. I pulled the temporary coefficient up to global status and declared it to be a shared
variable, finally getting the test problem to run.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 25 October 12, 2010

Task Approx.
Duration

Notes

Familiarization with code - LIP (includes
initial meetings with code author, and
code team, sketching out a call tree and
data usage chart to assist with
comprehension, learning SourceForge and
Subversion to gain access to LEOS/LIP)

20 days

Once I started asking questions about
LEOS/LIP, realized that I was going to have
to gain access to additional resources, learn
to use SourceForge to get to
documentation and the learn Subversion to
get to the sourcecode.
Additionally, since UPCC ships the code off-
site, LIP would either have to be reviewed
and released (time-wise infeasible) or I
would have to figure out the error in
compiling the translator on-site – another
to-do.
After LBNL visit, worked through LEOS
coding again to set up the correct non-local
shared information, i.e. have shared
information at the highest level, and got
that version of LEOS/LIP to compile.

Identification of variables to convert to
shared memory variables 2 hours

Conversion of variables to shared memory
variables. Movement of any local
variables that must be shared to global
declaration section

8 hours Finally figured out how to allocate memory
across the threads by looking at several
sources including the book and a few other
sites. Drew out the memory for LEOS, and
documented it.

Proper allocation of shared memory
variables

10 hours

Conversion of for loops that must be
parallelized to upc_forall loops

8 hours

Non-trivial – look at all loops for coeff and
figure out how to augment for shared
memory

Debugging of basic compilation problems 5 days Compiler messages are vague and take time
to figure out.

Familiarization with code - Liptest.c 5 days Took some time to figure out there was a
temporary coefficient array that needed to
be promoted and moved into shared
memory, which required more thought and
coding. The rest of the UPC transition went
quickly since I was already familiar with the
syntax.

Identification of variables to convert to 2 hours

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 26 October 12, 2010

Task Approx.
Duration

Notes

shared memory variables
Conversion of variables to shared memory
variables. Movement of any local
variables that must be shared to global
declaration section

1 hour

Proper allocation of shared memory
variables

1 hour

Conversion of for loops that must be
parallelized to upc_forall loops

1 hour

Debugging of basic compilation problems 1 hour

Running several threaded problems 8 hours (and
counting)

Have run and compared against two test
problems in repository: First one thread
versus serial, then several threads against
serial.

Total 37 days
Table 6-2 Work breakdown, UPC learning and code conversion effort, LEOS.

6.4.2. Overall Lessons
There is a learning curve with the application - LEOS/LIP, and there is a learning curve with UPC more
than just adding C parallel directives. Although initially there appeared to be a reasonable number of
web sites and a book to learn about UPC, until you actually try to apply UPC to a real problem versus
running some of the test problems, there is not much help out there – you are on your own to explore
and learn. Visiting LBNL helped a bit with making progress. The UPC Clomp section on Overall Lessons
does an excellent job of summarizing many of the issues as does the breakdown above concerning
where time was spent on the effort to port LEOS/LIP. Fortunately for this problem, the coefficient array,
although a part of a structure, was global to the source code via an existing header file so I did not have
to permeate the code with its presence. In the test case, for the temporary coefficient array, I had to
think how to cleanly pull out the temporary array, then assign a local array per thread so as not to touch
numerous functions with passing this shared array – non-trivial to do in UPC. It took me a while to think
through how to minimize damage to the existing infrastructure with the UPC caveats.

Now I am trying to run with multiple threads, which need to be compiled in thus changing the Makefile
and recompiling all of the source codes. I am having trouble with the compile, and have a vague error,
so I need to try either google to find a similar error (no match), or send the error into the ticket system
or LBNL contacts and wait for help.

6.4.3. Debugging
Debugging consists of printf and lots of swearing. Sometimes, you send snippets of code to LBNL, and
they are able to help. Occasionally, you google, and you actually get a hit – about 5% of the time.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 27 October 12, 2010

7. Results

7.1. CLOMP – UPC
The charts in this section are comparisons of OpenMP and UPC performance of the CLOMP code on the
hera system for different input problems. Each node of hera has 4 Quad-core Opteron 8356 2.3 GHz
CPUs for a total of 16 cores per node, and 32 GB of memory. All runs were performed on a dedicated,
‘quiet’ node.

OpenMP cases were compiled with the Intel 10.0 compilers with–O3 optimization. UPC cases were
translated to C using the Berkeley 2.10.2 compiler/translator, and the Intel 10.0 compilers were then
used to compile the translated code. All UPC cases used the PSHM (Process Shared Memory) GASNet
layer for parallelization.

Speedup figures provided are relative to the OpenMP serial reference case for the given input problem.
In Figures 7-1 through 7-3, all OpenMP threads allocate their own memory. This ‘intelligent allocation’
strategy optimizes NUMA memory access patterns and mimics the performance of the OpenMP
memory affinity patch being developed by B. deSupinski, M. Schulz, and A. Baker at LLNL.

Over a variety of problem sizes, the raw time to run parallel regions of the UPC port of CLOMP was
faster than dynamic OpenMP scheduled loops but slower than manual or statically scheduled OpenMP
loops when shared memory for the OpenMP cases was allocated by each worker thread. Combined
with the generally slower serial regions of the code under UPC, the present UPC port of CLOMP is
significantly slower than an OpenMP port with an intelligent allocation strategy.

Figure 7-1 Speedup on 16-way hera node relative to OpenMP serial reference case for 'Target' input.

The ‘Target’ input case that was examined in Figure 7-1 is a small memory footprint problem (209k).
There are 64 partitions and 100 zones per partition. This translates to 64 independent linked lists with
100 elements in each list.

Performance of all cases is low relative to peak speedup of 16 and the ‘Bestcase’ OpenMP speedup of
11.5. Bestcase speedup provides an upper bound on speedup but does not have adequate barriers to
ensure correct answers. For this case and the cache-friendly input case (Figure 7-2), several OpenMP

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 28 October 12, 2010

environment variables were set in order to increase performance of the Static and Dynamic OpenMP
cases, at the expense of the Manual case (and the Bestcase)9.

Note that UPC performance is significantly worse than the serial reference case, as seen by a speedup
value less than 1.

Figure 7-2 Speedup on 16-way hera node relative to serial reference case for cache-friendly input.

Figure 7-2 shows speedup for a very small memory footprint problem (6,656 bytes). Speedup for all
cases is again poor relative to the OpenMP Bestcase of 12.5. For this problem, UPC does gain over the
serial reference case, but still performs worse than the Static OpenMP case.

9
 These environment variables settings are: KMP_BLOCKTIME=infinite, KMP_LIBRARY=turnaround, and

KMP_AFFINITY=compact,0

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 29 October 12, 2010

Figure 7-3 Speedup on 16-way hera node relative to serial reference case for memory-bound input.

Best results under UPC are seen with large-memory cases. This can be attributed to the lower relative
impact of the code that is inserted to do pointer arithmetic on shared variables, which has a greater
relative impact on small-memory cases or cases with a high flop/memory access ratio.

Figure 7-3 shows speedup for an input problem that is 328 MB in size. The larger memory footprint is
achieved by increasing the length of each linked list to 10,000 zones. Speedup of all cases is closer to
the Bestcase speedup of 14.8 than for smaller memory inputs. Despite performing better, the UPC case
still lags in performance relative to the Static and Manual OpenMP cases.

Figure 7-4 Speedup on 16-way hera node relative to serial reference case for memory-bound input and single thread
allocation for OpenMP cases.

Figure 7-4 shows results for the same problem dimensions as Figure 7-3, but with a different allocation
strategy for the linked lists in the OpenMP cases. In this case, OpenMP memory allocation is not done in
a parallel region, so only one thread is used to allocate linked list memory. This allocation strategy

0

2

4

6

8

10

12

Static OpenMP Dynamic OpenMP Manual OpenMP UPC

Sp
e

e
d

u
p

Speedup Given Memory-Bound Input

0

1

2

3

4

5

6

7

8

Static OpenMP Dynamic OpenMP Manual OpenMP UPC

Sp
e

e
d

u
p

Speedup Given Memory-Bound Input,
Single Thread OpenMP Allocation

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 30 October 12, 2010

creates suboptimal memory access patterns on a NUMA system. The UPC allocation strategy for the
linked lists remains the same as in Figure 7-3 and is a call to upc_all_alloc().

Figure 7-5 Runtime for Barrier loop.

As seen in Figure 7-5, UPC barriers are notably faster than OpenMP barriers for the compilers and
platform tested.

Figure 7-6 Runtime for calc_deposit() routine calls.

The calc_deposit() function emulates an MPI data exchange but does not do any actual communication.
There are a large number of shared memory accesses that occur in this routine. Each shared memory
access causes the UPC compiler to insert code. As a result this function takes 35 to 36 times more time
in UPC code than the same routine coded in straight C/OpenMP, regardless of the problem dimensions.

There is a small amount of actual work in the original calc_deposit routine, and there are many function
calls inserted. The actual number of top-level functions that are inlined into the code is equivalent to:

 13 + (3 * numParts)

where numParts is the number of partitions, which is equivalent to the number of independent linked
lists. This accounts for the high number of code insertions and the poor performance under UPC.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

OpenMP UPC

Se
co

n
d

s

Barrier Runtime

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

OpenMP UPC

Se
co

n
d

s

calc_deposit() Runtime

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 31 October 12, 2010

Figure 7-7 Runtime for serial reference case, OpenMP versus UPC.

Serial code performance under UPC was initially very poor due to use of the strict memory model. This
improved with use of the relaxed memory model, but was still significantly slower than the OpenMP
case regardless of problem size. The strict memory model inserts a number of additional barriers and
function calls into the translated code. See Appendix A for an example of inserted code.

In Figure 7-7, the code insertion overhead shown for calc_deposit() in Figure 7-6 is apparent in the serial
reference case. For the ‘Target’ input problem, the UPC case takes 3.5 times longer to run than the
serial case written in C (with OpenMP in other regions of the code).

7.2. CLOMP - OpenCL
The OpenCL port of the CLOMP benchmark did not result in very impressive performance. In most
cases, the OpenCL version was in fact slower than the serial version with no parallelization whatsoever.
This was expected, however, since a great deal of buffer copies to/from the compute device were
required. Even a version which minimized these copies was not much better than the serial version, and
in many cases worse. It should be noted that no optimization steps were taken in the kernel code,
which might have improved the speedup. The parameters lending themselves to the best speedup
increased the problem size, and especially the number of floating-point operations to be performed.
This mitigated some of the inefficiencies associated with OpenCL overheads such as buffer copies and
kernel invocations.

Below are four different experiments measuring speedup relative to the serial (sequential) case. Each
experiment has a different input type used to characterize different performance metrics. That is,
different parameters were used with CLOMP in order to stress different parts of the system. These were
run on edgelet, a system with two six-core Intel Xeon 2.66 GHz Westmere CPUs, 48 GB RAM, and two
NVIDIA Tesla M2050 GPU Compute Units per node. The OpenCL cases were run on the GPU units, while
the OpenMP (OMP) cases were run using the CPUs.

0

2

4

6

8

10

12

14

16

OpenMP UPC

Se
co

n
d

s

Serial Reference Runtime Given
Target Input

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 32 October 12, 2010

Figure 7-8 Speedup on 12-way edgelet node relative to serial reference case for target input.

Figure 7-8 provides performance analysis for the “default” case, which uses the target input parameters.
Performance was very poor for the OpenCL cases, due to the many iterations being performed and high
overhead.

Figure 7-9 Speedup on 12-way edgelet node relative to serial reference case for cache-friendly input.

The cache-friendly version shown above in Figure 7-9 results in better performance for all cases. The
CPU-based OpenMP cases were given more data (floating point operations) to calculate, which resulted
in more cache resident data. The GPU-based OpenCL cases resulted in a two-times speedup over the
serial case, also due to more floating point operations to be performed per iteration. We suspect that
the dynamic OpenMP case performs better than the other OpenMP cases for this input because of load
imbalances created by the thread count of 12, which is not a power of 2. The load across CPUs is
therefore not evenly distributed, and the dynamic OpenMP case alleviates this issue with load balancing.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 33 October 12, 2010

Figure 7-10 Speedup on 12-way edgelet node relative to serial reference case for memory-bound input.

The memory-bound input shown in Figure 7-10 consists of larger input data sizes to be operated on
(more zones per partition). For the CPU tests, performance was worse than in the cache-friendly case,
but worse than the target case. The additional data allowed more processing to be done in parallel, but
still did not match the more flops-intensive case. The GPU tests performed very poorly, similar to the
target case.

Figure 7-11 Speedup on 12-way edgelet node relative to serial reference case for flops-bound input.

The flops-intensive case shown in Figure 7-11 increases the amount of floating point operations per
iteration by a factor of 10 over the cache-friendly case, also resulting in an overall decrease in iterations
(since the time scale is not altered). The CPU cases are all comparable, and finally the GPU cases show
significant speedup. This is due to the overhead of OpenCL and GPU memory buffers being mitigated by
the sheer amount of computation to be done in each iteration. The raw floating point capability of the
GPU in this case is clearly demonstrated.

7.3. CLOMP - Cuda

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 34 October 12, 2010

At this time, we are still in the process of converting code, and will continue to try to get the code
compiled and debugged. As this was a learning process, we accomplished that task, and learned about
CUDA and programming for a GPU. We have developed several guides, including a guide on tutorials
available and a journal on how to compile/run CUDA.

7.4. LEOS - UPC
UPC cases were translated to C using the Berkeley 2.10.2 compiler/translator, and the gcc 4.3.2
compilers were then used to compile the translated code. All UPC cases used the SMP (pthreads)
GASNet layer for parallelization.

Currently, timing is the only concrete result I(Evi) can report. As the problem size increases, I would like
to find a way to report memory size per thread to verify distribution of the coefficient array.

Compiler Liptest 1 Liptest4

gcc elapsed time 0.080000 elapsed time 0.060000
upcc elapsed time 0.080000 elapsed time 0.040000

I am surprised to see that the upcc compiler is faster than the gcc compiler for the Liptest4 case.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 35 October 12, 2010

8. Code Maintenance and Development Environment Requirements

8.1. UPC

8.1.1. Application Team Requirements
In this section we describe what is needed in order to maintain the ported code, from an application
developer’s perspective, that was not required prior to the port, and separate from the items
mentioned in Sections 8.1.2 and 8.1.3.

The primary requirement for code that has been ported to UPC is that application developers learn UPC
and maintain familiarity with it. In order to make best use of UPC, a programmer must understand the
problem data well enough to make decisions about how to divide it amongst all the threads in a way
that maximizes data locality. As mentioned previously, we found aspects of the memory management
concepts of UPC difficult to learn. This will likely be a challenge for application development teams as
well.

Mixing UPC and MPI is a paradigm shift in parallel programming. Two separate modes of parallelism are
both alive from program launch to program exit. Learning how to properly utilize both UPC and MPI
without introducing conflicts and bugs will present another learning challenge to application developers.

Developers will likely require LLNL-specific UPC documentation along with support from an on-site UPC
expert as they acquire the skills to program mixed MPI/UPC code.

8.1.2. GASNet (Global Address Space Network)
As discussed in Section 3.1.3, the GASNet is the layer that allows UPC compiled code to manipulate
shared variables. It provides an API to compiled code and then communicates over the target network.
This network could be pthreads, PSHM (process shared memory), or any of a number of network
protocols such as Infiniband VAPI.

Multiple GASNets may have to be installed and supported in a production environment in order to
provide flexibility. From a support perspective, it would be best to have as few GASNets installed as
possible. In addition to supporting multiple installs, staff may have to devote time to isolating bugs in
the GASNet layers as they arise.

The most likely scenario for mixing UPC and MPI in LLNL codes is to have UPC provide on-node
parallelism and MPI provide off-node parallelism. If this model is followed, only on-node GASNet layers
need to be installed. This would restrict the GASNets to PSHM and SMP (pthreads) and eliminates the
problem of possible network contention between MPI and UPC.

8.1.3. Development Environment

8.1.3.1. Compiler and Translator
Building and maintaining UPC consists of installing a compiler, translator, and include files that must be
accessible to the user. Additionally, there are a number of options available to the user regarding which
underlying networking protocol can/should be built to optimally use the platform. The system then
needs to be verified, ensuring that it has properly linked the compiler with the translator, and that the
translator that exists at the LBNL web site will not be inadvertently used. A maintenance headache can
arise if multiple versions of the compiler are built and maintained. Our advice is to settle on one or two
versions per platform to minimize maintenance and developer choices.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 36 October 12, 2010

The more pressing need is for expertise in UPC. As was mentioned in the above use case studies, it is
non-trivial to gain expertise in UPC. The support infrastructure is limited which means enhancing the
one we have developed and practicing with more use cases. Unlike the GPU community, there is no UPC
user group to bounce questions off of or to get ideas from to assist with design or debugging, so you will
be building your community on your own.

8.1.3.2. Debuggers
At present there is no debugger support for a current version of UPC. This will have to change if UPC is
to be used at scale for LLNL applications. We have a medium-priority request filed with the TotalView
team to support a current UPC. Ongoing support will involve testing new releases of TotalView and UPC
to ensure nothing breaks, along with supporting bugs that users encounter while debugging UPC
applications.

8.1.3.3. Performance Tools
There are several performance tools available for UPC from the University of Florida, such as the Parallel
Performance Wizard (PPW). We did not test these tools during the course of this study. Basic support
would include building and maintaining these tools and providing basic documentation on how to access
and use them. Additional support would include responding to bug requests related to the tools, and
providing expertise in the tools at user request.

To understand performance issues and bottlenecks in the CLOMP code, I (Charles) examined the
translated code and compared it to the original serial C code. No additional tools are required beyond
the default compiler and translator to generate and examine translated code.

A major cause of slow UPC code performance is excessive function calls and extra code inserted by the
translator. Each reference to a shared memory pointer variable inserts a nontrivial amount of code. See
Sections 6.1.2 and 7.1 as well as Appendix A for further discussion.

8.2. OpenCL

8.2.1. Application Team Requirements
Developers wishing to learn and/or use OpenCL have a variety of resources available to them. First and
foremost, the Khronos group maintains the OpenCL specification and has materials available on their
web site: http://www.khronos.org/opencl/. Additionally, there are presentations available from recent
conferences, and from NVIDIA and AMD, on their respective web sites. There is also a book on OpenCL,
entitled The OpenCL Programming Book. Information is available from the web site:
http://www.fixstars.com/en/company/books/opencl/.

No official membership to any group or forum is required. However, depending on the hardware target
platform(s), it would be wise to follow the forums and web sites of the vendor supplying the
implementation. This will allow any device-specific idiosyncrasies or bugs to be more easily located and
explained. Otherwise, the open nature of the platform allows for a variety of perspectives and
resources, and no single source of information may be the only one needed. It is recommended that
teams communicate with each other and other users tackling similar problems using OpenCL.

http://www.khronos.org/opencl/
http://www.fixstars.com/en/company/books/opencl/

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 37 October 12, 2010

8.2.2. Development Environment and Compliers
OpenCL is a specification rather than a specific compiler/tool/platform. Therefore, any device or
hardware platform may support the specification, but this requires an implementation that conforms to
it.

Therefore, the development environment must be supported by an OpenCL implementation. The
availability of this depends on the hardware and operating system used. That is, given a set of
hardware, it must be determined whether the OpenCL prerequisite software has been released for such
a platform. This depends on the hardware vendor, as the implementation must be customized for their
hardware. This is different from the GNU toolchain for instance, which is supported across a variety of
hardware platforms.

Currently, Apple, AMD, IBM, and NVIDIA have OpenCL implementations, with Intel promising a release
“soon.” So, while support depends on vendor implementation, most of the major ones have already
released working versions.

In the case of the OpenCL version of CLOMP discussed in this paper, the Apple and NVIDIA
implementations were used. The Apple implementation was used on a workstation to initially develop
the code (and basic examples). No support at all is required, since an implementation ships natively
with the newest Mac OS X 10.6. However, for the “production” version, the NVIDIA implementation
was used, since NVIDIA GPUs were the hardware target. The software was pre-installed on the edgelet
cluster, and includes the CUDA Toolkit and Developer Drivers.

8.2.3. Debuggers
The gDEBugger CL tool is a new one, which enables the debugging of OpenCL kernels. It is currently free
and multi-platform, but is not really meant for an HPC environment. Since the GPUs used for this paper
were accessed remotely, this tool is only minimally (if at all) useful.

The ATI Stream SDK supports debugging OpenCL kernels, but only in the x86 CPU case, and only using
their platform implementation. Again, this is not useful for the environment used in this paper, since
NVIDIA GPUs were used.

NVIDIA Parallel Nsight is a Visual Studio plugin that allows the debugging and profiling of OpenCL
kernels, as well as CUDA (see next section). However, this is a Windows-only solution and therefore not
useful in this case.

8.2.4. Performance Tools
The ATI Stream SDK includes tools to perform profiling and performance analysis of OpenCL programs.
NVIDIA Parallel Nsight (mentioned above) also supports profiling. However, both of these tools are
Windows-only and therefore not useful in this case. The NVIDIA Visual Profiler holds some promise,
since it is cross-platform. However, it is still only suitable for a desktop setup, and not intended for
cluster users.

8.3. Cuda

8.3.1. Application Team Requirements
As was mentioned in an earlier section, the NVIDIA Developer’s Zone, found at
http://developer.nvidia.com/object/gpucomputing.html, keeps tabs on the latest developments
regarding CUDA and CUDA downloads and documentation. Forums, workshops, the latest news, blogs,

http://developer.nvidia.com/object/gpucomputing.html

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 38 October 12, 2010

etc. are available, and you can register for a GPU Computing registered developer account which will
give you up-to-the-minute information on NVIDIA’s releases. This social networking capability allows an
application developer access to and continuous feed of the latest information in a streamlined fashion,
and the developer can filter information, passing toolkit updates to LC as needed. I thought it was an
impressive way to use current social media at whatever level the developer wanted to engage at – and it
showed me that this product is heavily endorsed by the vendor and is becoming production ready.

8.3.2. Development Environment and Compliers
We are impressed with the on-line tools and the web site and social media available – it certainly made
it easier for several of us to learn about the programming model and come up-to-speed relatively
quickly. I (Evi) had some minor issues with finding items, and the language has some idiosyncrasies,
however all of them will be different, and that is part of the learning curve.

8.3.3. Debuggers
CUDA toolkit ships with CUDA.gdb debugger, and a profiler, along with the documentation to figure out
how to run the debugger. AllineaDDT has a commercial CUDA debugger and Totalview is currently
releasing their Beta version of their CUDA debugger. With the NVIDIA product, as long as the toolkit is
loaded, we will have access to the new debugger, we just have to verify it works. With Allinea and
Totalview, we need to maintain contact and collaborations with these companies. Currently, we have
active alliances with these two companies to develop and improve existing debugger products, so
adding CUDA to the mix should be a smooth operation since CUDA is used by many outside the National
Laboratories (unlike UPC which seems to have a small following).

8.3.4. Performance Tools
CUDA Toolkit ships with a Visual Profiler that appears to get reasonable results from talks heard at the
GPU Technology Conference 2010. This profiler gives a good first guess at your program’s issues. Many
scientists did suggest that stronger tools would be needed in the future to identify the more systemic
issues with a program.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 39 October 12, 2010

9. Conclusion

A lack of tools such as debuggers made accurate effort estimation for the UPC port difficult. We believe
that the time we spent porting CLOMP to UPC was greater than the time an application developer would
have spent on the same code, especially if he or she was already familiar with it. However, the present
nature of the UPC language requires that an entire application be modified if one small region is to be
parallelized. This implies that the time to parallelize a large code with UPC will always be longer than
the time to parallelize with OpenMP.

We recommend against the use of UPC as an alternative to OpenMP for intranode parallelism in LLNL
scientific applications that use MPI for internode parallelism. If an application has constructs that make
the use of global arrays preferable to the existing code design, application teams may still choose to port
to UPC. However, if an application design would not benefit from a switch to global arrays, we believe
that the complexity involved in the port and subsequent code maintenance does not justify the
performance increase relative to OpenMP. For a range of problem dimensions, parallel UPC code
performance with the CLOMP code was worse than statically scheduled OpenMP parallelism, so long as
an intelligent memory allocation strategy was used with OpenMP10. We do not know what the outcome
of additional tuning might be, and we cannot rule out the possibility that such tuning could ultimately
give UPC code an advantage over OpenMP for CLOMP. However, the large amount of code inserted by
the Berkeley UPC translator for every UPC shared variable manipulation makes it seem unlikely that
performance could be significantly better than OpenMP performance with memory affinity.

Table 9-1 compares UPC to OpenMP across a number of factors.

 OpenMP UPC

Type API supported by most modern
C/C++ and Fortran compilers.

Language with compiler, translator, and
GASNet layer that overlays C
programming language.

Parallel programming
model

Work sharing, mostly through
parallelizing loops. Shared
variables are updated by
different threads in independent
loop iterations.

Work sharing through parallelized for
loops or thread-dependent execution
paths. Shared variables updated
through independent loop iterations.

Devices supported Runs over multiple cores on a
single node.

Flexible depending on GASNet layer.
Can run over multiple cores on a single
node, or across nodes by utilizing the
system interconnect.

Threading model Multithreading fork-join. All threads independently run entire
program.

Shared memory model Shared variables can be accessed
by any thread (restricted to one

Shared variables can be accessed from
any thread of a run, which can extend

10

 A caveat: Determining behavior of applications at scale must at present be extrapolated from our intranode
results. Only intranode parallelism was examined in this study, and no MPI runs were conducted.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 40 October 12, 2010

 OpenMP UPC

node). Variable declarations and
allocations do not change.

across nodes. Shared variables have
unique forms of declaration and
allocation and must be global variables.

Memory affinity No default concept of memory
affinity. Possible with affinity
patch or by intelligent allocation.

Memory affinity available through use of
particular allocate statements.

Performance Without memory affinity: Fair
With memory affinity: Good
Using static loop scheduling:
Good
Using dynamic loop scheduling:
Fair

Debug version: Very Poor
Strict memory consistency: Poor
Relaxed memory consistency: Good
Calculations with excessive shared
pointer arithmetic: Poor to Fair
Memory-bound calculations: Good

Time to learn Low Low

Time to master Medium High

Time to port code Low High

Time to debug Medium High (will likely go down once debugger
is available)

Support and
documentation

Very good Fair

Robustness and stability Good Fair

Table 9-1 UPC versus OpenMP.

We did not get far enough with our CUDA port to directly compare results to our OpenCL results.
However, recent developments in CUDA as evidenced at the GPU Conference in San Jose during the
week of September 20 show that it is becoming more robust, is supported by multiple vendors, is being
experimented with by the scientific community with good results, and will soon be able to be used with
the x86-64 architecture.

OpenCL proved to be a relatively straightforward model to use, once the verbosity of initialization and
setup code was understood. The lack of UNIX-based cluster debugging and profiling tools was
troublesome, but not completely inhibiting, thanks to the use of extensive error checks during kernel
setup. Thanks to early multi-vendor adoption, there is a variety of information available about the
standard, from beginning to advanced tutorials.

However, since this is still a relatively new standard, the lack of implementations (Intel is notably absent)
was severely limiting for cross GPU-CPU comparison, which OpenCL could facilitate. All other major chip
vendors have released an implementation. Such a release from Intel is promised to be soon, and would
allow CPU vs. GPU performance analysis, using the same code. Additionally, it would facilitate an

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 41 October 12, 2010

OpenMP versus OpenCL performance analysis, both on the CPU, which would allow a true comparison
of the two shared memory programming models.

It is expected that the standard will continue to mature and be adopted. Implementations will also
become more bug-free and performance-minded as more users test and use them. Therefore, this
programming model holds promise for future systems with heterogeneous parallel architectures.

 CUDA OpenCL

Double-precision support Yes, but depends on device Yes, but depends on device and
requires extension

Devices supported NVIDIA GPUs only Multiple, with implementation
Operating systems supported Windows, Linux, Mac OS Windows, Linux, Mac OS*
Languages supported C, C++, Fortran, DirectCompute C, C++
Pointer support Yes, Fermi devices only No
Recursion support Yes, Fermi devices only No
Memory buffer flexibility Limited Extensive, especially with 1.1
Documentation available Extensive Moderate
Newest release version 3.1 1.1
Printf support Yes, Fermi devices only Yes, but depends on device and

requires extension
Table 9-2 CUDA versus OpenCL feature comparison.

*Requires existing implementation on this platform, but these exist for all three operating systems.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 42 October 12, 2010

10. Next Steps

We first propose that we conduct more interviews with code teams and with key LC staff. The purpose
of these interviews is to learn and document what these teams and staff will need to ensure a successful
migration to exascale-suited programming models. After completing the interviews, we will propose
additional deliverables that address these needs. It is critical that we ask the right questions in these
interviews. By determining how our interviewees currently make long-term decisions about their
domain of expertise and then implement those decisions, we can create deliverables that directly aid
them in their decision-making and implementation process.

We propose that we prepare a comprehensive survey of novel models of parallelism that could be
used for exascale computing. In order to prepare this survey, we expect to do online research, talk and
meet with key industry players, and talk and meet with staff at other DOE labs. This survey will include:

 Characteristics of the models

 Their anticipated suitability to several types of LLNL scientific applications

 An examination of the present state of each of these models

 Our prediction for the state of these models in an exascale timeframe

 A qualitative risk assessment of using each model

 Recommendations for steps to take to mitigate risk with each model

 Recommendations on overall approach to take

 Implementation timeline with milestones

Similar to the deliverables that will come out of our interview process, this survey will be a useful tool
for both application teams and LC staff in preparing for these future models, planning future resource
allocation, planning for migration to the models, and making decisions about what actions to take now.

We propose porting an MPI application coded in C that has not already been parallelized with
OpenMP to OpenMP, CUDA, and/or OpenCL. Depending on the progress of our survey, we may also
port the code to one or more additional to-be-identified models. Performance of the ported application
will be a primary study result. We will also track and report on the time spent porting to each target
coding model. This finding will constitute a significant study result.

We do not propose moving forward with studying UPC as an alternative to OpenMP for intranode
parallelism. We may identify a code such as LEOS that would benefit from a design shift to using global
arrays. If we do, this code would be a candidate for porting to UPC, and we may incorporate it into our
study. Our hypothesis is that porting to UPC/MPI would take considerably more time than porting to
OpenCL/MPI, CUDA/MPI, or OpenMP/MPI. This is because porting to UPC will require an examination
and possible recode of every single function, whereas porting to CUDA, OpenCL, and OpenMP will only
require modification to the routines that are to be parallelized.

CUDA and OpenCL are fairly similar, with CUDA having more flexibility in language constructs and better
support, while OpenCL is an open standard with more flexibility in target architectures. In November
PGI will be releasing a CUDA C compiler that will run CUDA code on an X86-64 CPU. Intel has stated that
they will release a version of OpenCL that runs on Intel CPUs late in calendar year 2010. Once this is
released, it will permit us to directly compare OpenCL to CUDA and OpenMP on a specific CPU
architecture as opposed to a GPU-only architecture. CUDA support is much more robust than OpenCL
support. Allinea DDT and Totalview support debugging of CUDA applications. This would be a major

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 43 October 12, 2010

reason to prefer CUDA over OpenCL for a large application port. However, CUDA is an NVIDIA product.
OpenCL is an open standard language and for this reason should not be ruled out.

To stay current on the differences between CUDA and OpenCL, we propose devoting effort to an
ongoing analysis of feature improvement in both languages. The deliverable associated with this will
be a feature comparison between CUDA and OpenCL , with the anticipated audience being application
developers.

We will be able to prepare a timeline and resource requirements for the above deliverables once we
confirm interest in each of them from our stakeholders.

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 44 October 12, 2010

Appendix A. UPC Translator Code Insertion

The UPC translator works by translating UPC code into standard C and inserting it in place of the UPC
code so that it can be compiled with a normal C compiler. A call to the function below (or a similar
function depending on the specifics of the variable type) is inserted by the Berkeley UPC translator once
for every shared pointer modification. A similar call is inserted for every shared pointer access
independent of modification.

Note that if the strict memory model is in use, the isstrict variable below will evaluate to nonzero, and a
number of additional functions are called as a result.

__attribute__((__always_inline__)) static inline
void
_upcr_put_pshared(upcr_pshared_ptr_t dest, ptrdiff_t destoffset, const void *src,
size_t nbytes, int isstrict)
{

 static char _bupc_dummy_PASS_GAS = (char)sizeof(_bupc_dummy_PASS_GAS);

 upcri_local_t local = upcri_thread2local[upcr_threadof_pshared(dest)];

 (dest);

 ((void)0);

 if (local) do {
 {
 if (isstrict) gasneti_local_wmb();
 ((void)0);
 do {
 switch(nbytes) {
 case 0: break;
 case 1: *((gasnete_anytype8_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =
 *((gasnete_anytype8_t *)(src));
 break;
 case 2: *((gasnete_anytype16_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =
 *((gasnete_anytype16_t *)(src));
 break;
 case 4: *((gasnete_anytype32_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =
 *((gasnete_anytype32_t *)(src));
 break;
 case 8: *((gasnete_anytype64_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =
 *((gasnete_anytype64_t *)(src));
 break;
 default: memcpy(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)), src, nbytes);

 }

 }
 while(0);
 if (isstrict) _gasneti_local_mb();

 }
 ;

 }
 while (0);
 else do {
 {
 if (isstrict) gasneti_local_wmb();
 _gasnet_put(upcri_pshared_nodeof(dest),_upcri_pshared_to_remote_off(dest, destoffset),(void *)src,nbytes);
 if (isstrict) _gasneti_local_rmb();

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 45 October 12, 2010

 }
 ;

 }
 while (0);

}

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 46 October 12, 2010

Appendix B. Exascale Computing Programming Models

Two programming models are currently being proposed for exascale computing. The first is the hybrid
model, in which MPI is used for inter-node programming and something else for intranode
programming. The second is the unified model, in which a single notation is used for both inter- and
intranode programming. For our study, the CLOMP code represented the hybrid model, and LEOS
represented the unified model. The two are explained more below.

1. Hybrid/evolutionary: MPI + _______?
 Intranode options

 OpenMP
 would require extensions to support accelerator

programming
 e.g., similar to directives from PGI, CAPS
 may require the introduction of locality-oriented concepts
 these efforts are already underway as part of OpenMP 3.0

 PGAS languages
 already support a notion of locality in a shared namespace
 UPC/CAF would need to relax strictly SPMD execution

model
 Sequoia: supports a strong notion of vertical locality
 CUDA/OpenCL: Could be a lower level than ideal for an end user

2. Unified/holistic: _________?

 (a single notation for inter- and intra-node programming)
 traditional PGAS languages: UPC, CAF, Titanium

 • would likely require extensions to handle nested parallelism,
 vertical locality

 HPCS languages: Chapel, X10, Fortress(?)
 designed with locality and post-SPMD parallelism in mind
 other candidates: Charm++, Global Arrays, ParalleX,

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 47 October 12, 2010

Appendix C. Links, Tutorials, Places to Go to Learn More

Throughout our interdependent journeys to learn about UPC, CUDA ad OpenCL, we kept track of the
sources for learning that are available via books and on-line. Below are collections of our sources.

C.i. UPC Learning Experience

Research for UPC is being done at a number of different Academic sites, with different spins:

UPC@GWU
The UPC working group at the High Performance Computing Lab (HPCL) , George Washington
University (GWU) is involved in a number of efforts: UPC specification, UPC testing strategies,
UPC documentation, testing suites, UPC benchmarking, and UPC collective and Parallel I/O
specification.

 Berkeley UPC

The goal of the UPC effort at LBL and UC Berkely is to build portable, high performance
implementations of UPC for large-scale multiprocessors, PC clusters, and clusters of shared
memory multiprocessors. There are three major components to this effort: lightweight
communication, compilation techniques for explicitly parallel languages, application
benchmarks.

 UPC@MTU

Michigan Tech University (MTU) projects include the recent release of the MuPC run time
system for UPC as well as collective specification development, memory model research,
programmability studies, and test suite development.

 GCC UPC

The GCC UPC toolset provides a compilation and execution environment for programs written in
the UPC. The GCC UPC compiler extends the capabilities of the GNU GCC compiler. The GCC UPC
compiler is implemented as a C Language dialect translator, in a fashion similar to the
implementation of the GNU Objective C compiler.

 UPC@Florida

Researchers at the University of Florida are currently involved in the research and development
of a next-generation performance analysis tool supporting UPC. This tool will facilitate users in
identifying bottlenecks in their programs and will serve as a testbed for advanced analysis
techniques aimed at increasing programmer productivity.

http://upc.gwu.edu/
http://hpc.gwu.edu/
http://www.gwu.edu/
http://upc.nersc.gov/
http://www.upc.mtu.edu/
http://www.intrepid.com/upc/
http://www.hcs.ufl.edu/upc/

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 48 October 12, 2010

1. Book: UPC: Distributed Shared-Memory Programming (Hardcover)

ISBN-13 978 0-471-22048-0 (cloth)
ISBN-10 0-471-22048-5 (cloth)

 Tarek El-Ghazawi (Author), William Carlson (Author), Thomas Sterling (Author),
Katherine Yelick (Author) Price: $120.00

2. http://upc.lbl.gov/- Berkeley UPC - Unified Parallel C - (A joint project of LBNL and UC Berkeley) –

a. This web site talks about the project from the UCB/LBNL perspective, and gave me

names of people at LBNL/UCB to begin to pester, like Paul Hargrove.

b. The Downloads tab is where I got the downloadable version (plus the README files to

tell me what to do) that I am built and am currently running on Yana, and it is where I

figured out about the translator

c. I did not find this to be a helpful website – I probably should have joined their user

groups – that might have helped.

d. Under Publications tab, there are a few posters and talks that were initially helpful,

however, I thought the book did a better job.

3. http://upc.lbl.gov/docs/system/index.html

a. I cannot remember how I got to this documentation – probably by pestering Paul

Hargrove – this was useful in describing the layers of UPC – and how they fit together.

4. http://upc.gwu.edu/

a. This is the UPC web site at George Washington University –

i. I like this website a little better then the UCBerkeley website.

ii. http://upc.gwu.edu/documentation.html

1. UPC Language Specification (V 1.2)

2. UPC Manual – used the book more than this manual

iii. http://www.upc.mtu.edu/tutorials.html - going onto the Michigan Tech

website, you will find some example problems.

iv. http://www.gwu.edu/~upc/download.html - Testing Suites - I have yet to try

these on the compiler I built – it would certainly be worth it to try them.

http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt#reader-link
http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt#reader-link
http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt#reader-link
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=William%20%20Carlson
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Thomas%20Sterling
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Katherine%20%20Yelick
http://upc.lbl.gov/-
http://upc.lbl.gov/docs/system/index.html
http://upc.gwu.edu/
http://upc.gwu.edu/documentation.html
http://www.upc.mtu.edu/tutorials.html
http://www.gwu.edu/~upc/download.html
http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 49 October 12, 2010

1. The testing suite is intended to test the functionality of any

implementation of the UPC compiler and allow the user to measure the

degree of its conformance to the UPC standard. The suite should

contain a set of portable test programs. These programs fall under

either of the following categories:

a. Positive tests: These tests are to verify that UPC features work

properly according to the syntax and semantics described in the

UPC specifications.

b. Negative tests: These tests are to determine the error detection

capabilities of a UPC compiler implementation.

i. GWU Unified Testing Suite(GUTS), September 2008

ii. Unified UPC Test Suite 1.2.0-r1, June 2005

iii. The GWU Testing Strategy 1.1, March 2003

iv. The GWU Testing Suite 1.1, September 2004

v. The GWU UPC-IO Testing Strategy 1.2.0-r1, June 2005

vi. The GWU UPC-IO Test Suite 1.2.0-r1, June 2005

vii. MuPC Test Suite, January 2003

5. UPC Articles worth looking into:

a. Hybrid Parallel Programming with MPI and Unified Parallel C, about to be published,

James Dinan, P. Sadayappan (Ohio State); Pavan Balaji, Ewing Lusk, Rajeev Thakur

(Argonne). Excellent paper, plus corresponding with authors. First real hybrid of

MPI+UPC application with good results. mpiupc_cf10.pdf

b. Performance Evaluation of MPI, UPC and OpenMP on Multicore Architectures,

published Euro PVM/MPI 2009, Dami´an A. Mall´on1, Guillermo L. Taboada2, Carlos Teijeiro2,

Juan Touri˜no, Basilio B. Fraguela2, Andr´es G´omez1, Ram´on Doallo2, and J. Carlos Mouri˜no.

Excellent recent article on timings between these different approaches. Recent advances

in parallel.pdf

c. Execution Model of three parallel languages: OpenMP, UPC, CAF, published ISO press

2005, Arni Marowka. Good article describing these three approaches, and the pros and

cons. Scien001.PDF

d. Unified Parallel C - UPC on HPCx, Ian Kirker and Adrian Jackson, January 14, 2008, HPCx

Capability Computing. This document outlines the basic concepts of UPC, and explores

what functionality is available on HPCx. It then goes on to analyze the performance of

UPC against IBM's MPI and LAPI on HPCx. Both IBM's UPC offering, and an open-source

(Berkeley) UPC compiler are evaluated. HPCxTR0709.pdf

e. http://www.cug.org/1-conferences/CUG2010/pages/1-

program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-

10Tuesday/9B-Alam-slides.pdf - Evaluation of Productivity and Performance

Characteristics of CCE, CAF and UPC Compilers, by Sadaf Alam, William Sawyer, Tim Stitt,

Neil Stringfellow, and Adrian Tineo. Excellent, current article given at CUG 2010.

f. http://www.prace-project.eu/documents/13_pgas_sa.pdf - Productivity Analysis of

Integrated Compilers for PGAS Languages by Sadaf Alam at the PRACE (Partnership for

http://www.cug.org/1-conferences/CUG2010/pages/1-program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-10Tuesday/9B-Alam-slides.pdf
http://www.cug.org/1-conferences/CUG2010/pages/1-program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-10Tuesday/9B-Alam-slides.pdf
http://www.cug.org/1-conferences/CUG2010/pages/1-program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-10Tuesday/9B-Alam-slides.pdf
http://www.prace-project.eu/documents/13_pgas_sa.pdf
http://www.prace-project.eu/

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 50 October 12, 2010

Advanced Computing in Europe) Workshop “New Languages & Future Technology

Prototypes”, March 1-2, 2010.

C.ii. CUDA Learning Experience

Currently, two books exist – the first as a textbook, and the other has a good sampling of examples:

1. Programming Massively Parallel Processors: A Hands-on Approach, by David B. Kirk and Wen-
mei W. Hwu

2. Cuda by Example by by Jason Sanders and Edward Kandrot

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=David%20B.%20Kirk
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Wen-mei%20W.%20Hwu
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Wen-mei%20W.%20Hwu
http://www.amazon.com/gp/reader/0123814723/ref=sib_dp_pt
http://www.amazon.com/gp/reader/0131387685/ref=sib_dp_pt

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 51 October 12, 2010

CUDA has online courses to help you get started programming or teaching CUDA as well as links to
Universities teaching CUDA.

For a beginner, start with Introductory CUDA Technical Training Courses which give an overview of the
CUDA programming model and basic concepts. Try to register for one of Nvidia's CUDA webinars as
well. Although there are previously recorded webinars available on Nvidia's website, live webinars are a
good place to ask someone at Nvidia questions.

http://developer.nvidia.com/object/cuda_training.html
CUDA University is organized into three sections to get you started
Introductory CUDA Technical Training Courses
CUDA University Courses
CUDA Seminars and Tutorials

C.ii.a. Introductory CUDA Technical Training Courses

 Volume I: Introduction to CUDA Programming (94 pages long)
 Exercises (for Linux and Mac) (Tar file)
 Visual Studio Exercises (for Windows)
 Instructions for Exercises (12 pages long)

 Volume II: CUDA Case Studies (Real examples with coding and performance, etc.)
 Computational Finance in CUDA..1

1. Black-Scholes pricing for European options ...3
2. MonteCarlo simulation for European options..16

 Spectral Poisson Equation Solver ..40
 Parallel Reduction..63

C.ii.b. CUDAcasts - Downloadable CUDA Training Podcasts

 Introduction to GPU Computing
 CUDA Programming Model Overview
 CUDA Programming Basics - Part I
 CUDA Programming Basics - Part II

Additional GPU Computing Online Seminars

 Introduction to MainConcept's CUDA H.264/AVC Encoder

 Monitoring and Managing GPU Clusters with Bright Cluster Management

 An Introduction to OpenCL™ Application Development with gDEBugger CL

 Rapid Prototyping and Visualization with OpenCL Studio

 GPU Computing using CUDA C – An Introduction

 GPU Computing using CUDA C – Advanced 1

 GPU Computing using CUDA C - Advanced 2

 GPU Computing using OpenCL- An Introduction

 GPU Computing using OpenCL Advanced 1

 Parallel Nsight - An Introduction and Overview

 Thrust, A C++ Standard Template Library for CUDA C - An Introduction

http://developer.nvidia.com/object/cuda_training.html
http://*developer.nvidia.com/object/cuda_training.html#1
http://*developer.nvidia.com/object/cuda_training.html#2
http://*developer.nvidia.com/object/cuda_training.html#2
http://*www.*nvidia.com/docs/IO/47904/VolumeI.pdf
http://*www.*nvidia.com/content/cudazone/download/Exercises.tar
http://*www.*nvidia.com/content/cudazone/download/Exercises.zip
http://*www.*nvidia.com/content/cudazone/download/Exercise_Instructions.pdf
http://*www.*nvidia.com/docs/IO/47904/VolumeII.pdf
http://*http.download.nvidia.com/developer/cuda/podcasts/Introduction_to_GPU_Computing.m4v
http://*http.download.nvidia.com/developer/cuda/podcasts/CUDA_Programming_Model_Overview.m4v
http://*http.download.nvidia.com/developer/cuda/podcasts/CUDA_Programming_Basics_-_Part_I.m4v
http://*http.download.nvidia.com/developer/cuda/podcasts/CUDA_Programming_Basics_-_Part_II.m4v
http://*developer.nvidia.com/object/gpu_computing_online.html

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 52 October 12, 2010

C.ii.c. CUDA University Courses

University of Illinois : ECE 498AL

Taught by Professor Wen-mei W. Hwu and David Kirk, NVIDIA Chief Scientist.

o Introduction to GPU Computing (60.2 MB)
o CUDA Programming Model (75.3 MB)
o CUDA API (32.4 MB)
o Simple Matrix Multiplication in CUDA (46.0 MB)
o CUDA Memory Model (109 MB)
o Shared Memory Matrix Multiplication (81.4 MB)
o Additional CUDA API Features (22.4 MB)
o Useful Information on CUDA Tools (15.7 MB)
o Threading Hardware (140 MB)
o Memory Hardware (85.8 MB)
o Memory Bank Conflicts (115 MB)
o Parallel Thread Execution (32.6 MB)
o Control Flow (96.6 MB)
o Precision (137 MB)

These classes are each downloadable CUDAcasts with video pre-scaled to be compatible
with major players.

All PowerPoint class presentations can be found on the course syllabus: ECE 498AL

Stanford University: CS193G
Taught by Jared Hoberock and David Tarjan

o Introduction to Massively Parallel Computing
o GPU History and CUDA Programming Basics
o CUDA Treads and Atomics
o CUDA Memories
o Performance Considerations
o Parallel Patterns I
o Parallel Patterns II
o Introduction to Thrust
o Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors
o PDE Solvers
o The Fermi Architecture
o Ray Tracing Case Study
o Future of Throughput
o Path Planning Case Study
o Optimizing GPU Performance
o Final lecture TBD

http://*courses.ece.illinois.edu/ece498/al/Syllabus.html
http://*www.*ece.uiuc.edu/people/profile.asp?w-hwu
http://*www.*nvidia.com/object/bio_kirk.html
http://*www.*nvidia.com/content/cudazone/cudacasts/Introduction%20to%20GPU%20Computing.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/CUDA%20Programming%20Model.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/CUDA%20API.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Simple%20Matrix%20Multiplication%20in%20CUDA.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/CUDA%20Memory%20Model.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Shared%20Memory%20Matrix%20Multiplication.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Additional%20CUDA%20API%20Features.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Useful%20Information%20on%20CUDA%20Tools.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Threading%20Hardware.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Memory%20Hardware.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Memory%20Bank%20Conflicts.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Parallel%20Thread%20Execution.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Control%20Flow.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Precision.m4v
http://*courses.ece.illinois.edu/ece498/al/Syllabus.html
http://*code.google.com/p/stanford-cs193g-sp2010/
mailto:jaredhoberock@gmail.com
mailto:tar.cs193g@gmail.com
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_1/introduction_to_massively_parallel_computing.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_2/gpu_history_and_cuda_programming_basics.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_3/cuda_threads_and_atomics.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_4/cuda_memories.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_5/performance_considerations.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_6/parallel_patterns_1.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_7/parallel_patterns_2.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_8/introduction_to_thrust.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_9/sparse_matrix_vector_multiplication_on_throughput_oriented_processors.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_10/solving_pdes_with_cuda.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_11/the_fermi_architecture.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_15/optimizing_gpu_performance.pdf

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 53 October 12, 2010

PowerPoint versions of these presentations can be found here.
CS193G Assignments
CS193G Tutorials

UC Davis: EE171, Parallel Computer Architecture

Taught by John Owens, Associate Professor

o Course Materials

Universities teaching CUDA where you can apply to enroll or register for courses.

C.ii.d. CUDA Seminars and Tutorials

 GPU Technology Conference: search for recordings via the interactive session calendar
 SC09

o NVIDIA GPU Computing Theatre
o SC09 Tutorial: High Performance Computing with CUDA

 SC08 Tutorial: High Performance Computing with CUDA
 SC07 Tutorial: High Performance Computing with CUDA
 NVISION 08 Tutorials

o Getting Started with CUDA (covers CUDA programming model, basics of CUDA
programming, and BLAS and FFT libraries)

o Advanced CUDA Training (covers 10-series architecture and optimization techniques
using particle simulation and finite difference case studies)

o All presentations from NVISION 08
 ISC 2008 Case Study: Computational Fluid Dynamics (CFD)

C.ii.e. CUDA Consultants and Trainings

 Acceleware Professional Services
 Stone Ridge Technology
 Wipro Global Consultancy Services

Dr. Dobb's Article Series

 CUDA, Supercomputing for the Masses: Part 1
CUDA lets you work with familiar programming concepts while developing software that can run
on a GPU

 CUDA, Supercomputing for the Masses: Part 2
A first kernel

 CUDA, Supercomputing for the Masses: Part 3
Error handling and global memory performance limitations

 CUDA, Supercomputing for the Masses: Part 4
Understanding and using shared memory (1)

 CUDA, Supercomputing for the Masses: Part 5
Understanding and using shared memory (2)

http://*code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/assignments/
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/tutorials/
https://*smartsite.ucdavis.edu:8443/portal/site/1707812c-4009-4d91-a80e-271bde5c8fac/page/de40f2cc-40d9-4b0f-a2d3-e8518bd0266a
http://*www.*ece.ucdavis.edu/~jowens/
http://*www.*nvidia.com/object/cudau_ucdavis
http://*developer.nvidia.com/object/cuda_courses.html
https://*nvidiagtc.wingateweb.com/scheduler/schedule/eventDayView.jsp
http://*www.*nvidia.com/object/SC09_Theater.html
http://*gpgpu.org/index.php?s=supercomputing+2009
http://*gpgpu.org/sc2008
http://*www.*gpgpu.org/sc2007/
http://*www.*nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://*www.*nvidia.com/content/cudazone/download/Advanced_CUDA_Training_NVISION08.pdf
http://*developer.nvidia.com/object/nvision08-presentations.html
http://*developer.nvidia.com/admin/staging/IO/70081/ISC08_CFD.pdf
http://*www.*acceleware.com/default/index.cfm/professional-services/
http://*www.*stoneridgetechnology.com/services/visualcomputing.asp
http://*www.*wipro.com/
http://*www.*ddj.com/cpp/207200659
http://*www.*ddj.com/cpp/207402986
http://*www.*ddj.com/hpc-high-performance-computing/207603131
http://*www.*ddj.com/hpc-high-performance-computing/208401741
http://*www.*ddj.com/hpc-high-performance-computing/208801731

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 54 October 12, 2010

 CUDA, Supercomputing for the Masses: Part 6
Global memory and the CUDA profiler

 CUDA, Supercomputing for the Masses: Part 7
Double the fun with next-generation CUDA hardware

 CUDA, Supercomputing for the Masses: Part 8
Using libraries with CUDA

 CUDA, Supercomputing for the Masses: Part 9
Extending High-level Languages with CUDA

 CUDA, Supercomputing for the Masses: Part 10
CUDPP, a powerful data-parallel CUDA library

 CUDA, Supercomputing for the Masses: Part 11
Revisiting CUDA memory spaces

 CUDA, Supercomputing for the Masses: Part 12
CUDA 2.2 changes the data movement paradigm

 CUDA, Supercomputing for the Masses: Part 13
Using texture memory in CUDA

 CUDA, Supercomputing for the Masses: Part 14
Debugging CUDA and using CUDA-GDB

 CUDA, Supercomputing for the Masses: Part 15
Using Pixel Buffer Objects with CUDA and OpenGL

C.iii. OpenCL Learning Experience

Excellent GPU Computing web site: http://www.gpucomputing.net/
OpenCL tutorial from this site: http://www.gpucomputing.net/?q=node/128

 Video tutorial is especially useful

 Author has extensive CUDA experience and is able to compare and contrast OpenCL with CUDA

 Slides are also available

There is also an OpenCL book that has been published:
http://www.fixstars.com/en/company/books/opencl/
The OpenCL Programming Book, By Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, and Akihiro
Asahara

http://*www.*ddj.com/cpp/209601096
http://*www.*ddj.com/hpc-high-performance-computing/210102115
http://*www.*ddj.com/hpc-high-performance-computing/210602684
http://*www.*drdobbs.com/hpc-high-performance-computing/211800683
http://*www.*ddj.com/architect/212903437
http://*www.*ddj.com/hpc-high-performance-computing/215900921
http://*www.*ddj.com/architect/217500110
http://*www.*ddj.com/hpc-high-performance-computing/218100902
http://*www.*drdobbs.com/hpc-high-performance-computing/220601124
http://*www.*drdobbs.com/hpc-high-performance-computing/220601124
http://www.gpucomputing.net/
http://www.gpucomputing.net/?q=node/128
http://www.fixstars.com/en/company/books/opencl/

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 55 October 12, 2010

 Amazon review indicates that the majority of information from this can be found on the web,
however

A C++ oriented tutorial is available from AMD’s developer site:
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx

 Not very thorough and C++ only

GPU Technology Conference 2009 Materials
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
Specifically, OpenCL introductory material:
Slides: http://www.nvidia.com/content/GTC/documents/1409_GTC09.pdf
Video: http://www.nvidia.com/content/GTC/videos/GTC09-1409.mp4

 Good overview of Khronos group and OpenCL

 A bit NVIDIA-heavy since the people presenting work there

MacResearch Tutorials
http://www.macresearch.org/opencl

 Somewhat Apple-specific information, but good, thorough video tutorials

Slides from PPAM 2009 Tutorial
http://gpgpu.org/ppam2009
http://gpgpu.org/wp/wp-content/uploads/2009/09/

 Scientific computing emphasis

 “Clusters” portion of the presentation especially applicable to science codes

Parallel Programming Tutorials Series, Part 9
http://www.multicoreinfo.com/2009/08/parprog-part-9/

 Links to other resources

 Includes tutorials for other technologies (pthreads, MPI, MapReduce, etc.)

 Somewhat dated material (2008-2009)

Apple Developer Resources (Reference Library)

http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
http://www.nvidia.com/content/GTC/documents/1409_GTC09.pdf
http://www.nvidia.com/content/GTC/videos/GTC09-1409.mp4
http://www.macresearch.org/opencl
http://gpgpu.org/ppam2009
http://gpgpu.org/wp/wp-content/uploads/2009/09/
http://www.multicoreinfo.com/2009/08/parprog-part-9/

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 56 October 12, 2010

http://developer.apple.com/mac/library/documentation/Performance/Conceptual/OpenCL_MacProgG
uide/Introduction/Introduction.html

 Somewhat basic material, but good introduction

NVIDIA GPU Computing Resources
http://developer.nvidia.com/object/gpu_computing_online.html

 Up-to-date and relevant material

 Missed OpenCL webinars this past week

AMD Stream SDK/OpenCL Resources
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx

 Lots of development examples and tutorials

 Good documentation

 Video Tutorials:
http://developer.amd.com/documentation/videos/OpenCLTechnicalOverviewVideoSeries/Page
s/default.aspx

Khronos Group OpenCL Web Site
http://www.khronos.org/registry/cl/

 Official API registry, has header files and API docs
Khronos Group YouTube Videos (SIGGRAPH 2010)
http://www.youtube.com/user/khronosgroup

Supercomputing 2009 Tutorial
www.multicoreinfo.com/2009/08/parprog-part-9

 Very thorough tutorial by some of the best names in industry

 Includes real application examples from real codes

ENJ Tutorials
http://enja.org/

 Somewhat beginner in nature but source code provided

SIGGRAPH Asia 2009 Tutorial
http://sa09.idav.ucdavis.edu/

 Good introductory tutorial

DOE Talks
Petascale computing on Sequoia
https://hpcrd.lbl.gov/scidac09/talks/Seager-Sequoia4SciDACv1.pdf

NVIDIA-Specific Notes (from CUDA Toolkit 3.1)

 Make sure that the nvidia-specific CUDA toolkit path variables are set

 MUST have a clGetPlatformIDs call before getting device(s)

 MUST specify platform in context setup
o From NVIDIA OpenCL Implementation Notes 3.1:
o “clGetPlatformInfo and/or clGetDeviceIDs will fail with the CL_INVALID_PLATFORM

error if platform is NULL.”

http://developer.apple.com/mac/library/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html
http://developer.nvidia.com/object/gpu_computing_online.html
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
http://developer.amd.com/documentation/videos/OpenCLTechnicalOverviewVideoSeries/Pages/default.aspx
http://developer.amd.com/documentation/videos/OpenCLTechnicalOverviewVideoSeries/Pages/default.aspx
http://www.khronos.org/registry/cl/
http://www.youtube.com/user/khronosgroup
http://www.multicoreinfo.com/2009/08/parprog-part-9
http://enja.org/
http://sa09.idav.ucdavis.edu/
https://hpcrd.lbl.gov/scidac09/talks/Seager-Sequoia4SciDACv1.pdf

Getting to Exascale: Applying Novel Parallel Programming Models to Lab Applications

Page 57 October 12, 2010

Double-Precision Floating Point Support
#pragma OPENCL EXTENSION cl_khr_fp64 : enable // use 64-bit fp

 included in kernel (.cl) code

